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A stochastic analysis of seed germination
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Abstract. Seed germination under constant temperature is modeled stochastically. It is assumed that
a potentially germinable seed passes a series of transition or active states before it germinates. The
present stochastic model provides detailed information about the phenomenon under consideration, for
example, the mean and the variance of the number of germinated seeds as functions of time, and, there-
fore, is a generalization of the germination model appeared in the literature. The shape of germination
curve is found to be affected by the number of transition states.
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Introduction

Modeling seed germination is of major importance
in practice for obvious reason. To this end, a great deal
of work has been devoted to investigating the phenome-
non. Unfortunately, it is found that previous effort in
this area is either focus mainly on the experimental
aspect or lack of sound theoretical ground. In a study
of the effect of temperature on germination rate,
Goloff and Bazzaz (1975) have derived a linear relation
between the logarithm of the number of germinable
seeds and time. It should be pointed out that, more
often than not, functional dependence of the number of
germinated seeds on time which does not follow this
relation is often observed in a typical germination
experiment. By arbitrarily assurning the probability of
germination as a function of time, Bould and Abrol
(1981) are able to predict germination curve of various
shapes. The approach adopted can be classified as semi
—empirical since it is difficult to assign physical mean-
ing to the assumed functions. Thornley (1977) has
proposed an interesting way of portraying seed germi-

s Author to whom the correspondence should be addressed.

nation. It is assumed that seed germination occurs in a
stagewise procedure. The waiting time of germination
is found to have a gamma distribution provided that
the rate constant between successive stages is constant.
It should be noted that seed germination is a compli-
cated bioprocess which involves series of bioreactions.
Furthermore, the sample size of a typical seed germina-
tion experiment is often small, and thus, its random
nature can be significant. It appears that the phenome-
non can best be modeled by a stochastic representation.

Modeling

We assume that seed germination occurs in the fol-
lowing manner:

1st or 2nd 3rd nth or
initial>transition-transition—---—germinated
state state state state

That is, starting with the germination experiment, a
seed is assumed to be in state 1. A seed in state n corre-
sponds to that it is germinated. Let the random vari-
able N(t) represents the status of a seed at time t, a
specific value of N{t) is represented by i, i=1,2,---,n.
Denote pi(t) as the probability that N(t)=i. The follow-
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ing conditions are assumed:

1) PrN(t+At)=i+1 given N(t)=i]= LA + o(At)
2) PrIN(t+At)=i+j given N(t)=i]= o(At),j = 2
3) PriN(t+At)=i given N(t)=i]= 1 — LAt + o(At)
where (t,t+ At) is an infinitesimal but finite time inter-
val and the function o(At) satisfies the condition
lim oAt

At—0 At
Condition 1) indicates that a certain probability is as-
sociated with the transition from a state to the next
higher state during an extremely small time interval; 2)
states that the probability of two or more transitions in
this time interval is of order o(At); 3) is the statement of
probability conservation. Under these conditions, it can
be shown that p(t) satisfies the following set of differ-
ential equations:

=0

ﬂdit(t“)“ = L) — Api(t), i=23,0-1 (1)
dp, (t) _
B~ A @
and
dpa(t)
—a An-1Pn-1(t) @)

Equations (1) through (3) describe the probability distri-
bution of the status of a seed. The solution of these
equations subject to the initial condition

o= ( = @
PO Y el
takes the following form
pi() = e Mt 5)
i-1
; TAn
p)= = [T j et iogs. 0
k=1 ma,-a)
m=1
m+k
(6)
n-1
Palt) =1~ 3 pilt) )
i=1

Suppose that seeds behave independently during germi-
nation, it is clear that the number distribution of the
seeds in each state is multinomial (see, e.g., Rogatgi,
1976) with the mean or expected value
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E[M(t})]= Mopi(t), i=1,2,---,n ®
and the variance
Var[Mi()]= Mops(t) [1-p:(8)] ,i=1,2,-n  (9)

where M, denotes the total number of germinable seeds
initially present in the system and M;(t) is the number
of seeds in state i at time t. Higher moments of M,(t)
can also be obtained in a straightforward manner.
Thus, the mean number of germinated seeds and the
corresponding variance can be evaluated by letting i=n
in equations (8) and (9), respectively.

If the transition intensity between successive
states is constant, i.e.,

/11 = /12 — = ln—l =2 (10)
it can be shown, by induction, that the solution to equa-
tions (1) through (3) takes the following form

pi(t) = e At (11)
—At(api-1
pult) = e_(_f(ll)’t)_l L i=1,2,---n-1 12)
1-1)
n-1
Pat) =1 — = pult) (13)
i=0

The dynamic behavior of seed germination, as
predicted by the present stochastic model, is examined
through numerical simulations. For illustration, only
the results for the case where the transition intensity
between successive states is constant are presented.
Figure 1 shows the mean number of germinated seeds
as a function of time for various values of the number
of transition states. The corresponding variances are
illustrated in Fig. 2.

Discussion

As can be seen from Fig. 1, the present stochastic
model yields an inflection point when there exists at
least one transition state, i.e., the germination curve is
of S or sigmoid shape when n = 3. Germination curve
of sigmoid shape is often observed in a typical germina-
tion experiment (see, e.g., Hsu ef al., 1984; Gummerson,
1986). Figure 2 reveals that the variance of the number
of germinated seeds increases with time, achieves a
maximum value, and then vanishes in each case, mean-
ing that the measurement made in the intermediate
times may suffer a greater variation than those made
in the initial or final stages. In practice, the number of
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Fig. 1. Mean number of germinated seeds as a function of n
(n = 3) for the case A =0.5/hr, M,=100.
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Fig. 3. The experimental data of Bould and Abrol (1981, Fig. 6)

and the fitted result by the present stochastic model
with n=8, 1 =0.5396/hr, and M,=98.

transition states can be estimated by fitting the experi-
mental data to one of the germination curves in Fig. 1.
Figure 3 illustrates the experimental data reported by
Bould and Abrol (1981) along with the predicted results
evaluated by the present model.

In the case when n=2, i.e., seeds reach the ger-
minated state without going through transition states,
equations (5) through (7) become, respectively,

pi(t) = exp(-A:t) (14)
and

po(t) = 1 — exp(-A:t) (15)

Under this condition, the mean number of germinated
seeds and the corresponding variance are, respectively,

E[M.]= M,[1 — exp(-Ait)] (16)
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Fig. 2. Transient behavior of the variances corresponding to
the case of Fig. 1.
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Fig. 4. Transient behavior of the mean number of germinated

seeds and an approximate 95% confidence band for the
case 1,=0.5/hr, M,=100, and n=2.

and

Var[M,]= Myexp(-1:t) [1 — exp(-1,t)] (17

By referring to equation (16), the mean number of ger-
minable seeds, E[M, ()], is

E[Ml] =M, — E[Ml(t)]
= Myexp(-A;t) (18)

Equation (18) describes a linear relation between the
logarithm of the number of germinable seeds with time.
Thus, the mean of the present stochastic model reduces
to that of Goloff and Bazzaz (1975). The simulated
results for this case are pictured in Fig. 4. A 95%
(approximate) confidence band as calculated by E[M,
{t)] =+ 1.96Var[M,(t)]'* is also shown in this figure.
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Fig. 5. The experimental data of Bould and Abrol (1981, Fig. 5)

and the fitted result by the present stochastic model
with n=2, 1, =0.5825/hr, and M,=90.

Figure 5 illustrates the experimental data of Bould and
Abrol (1981) as well as the predicted value by the pres-
ent model.

If sub-groups exist among seeds, i.e., seeds of dif-
ferent germination behavior present simultaneously,
then the total number of germinated seeds at time t, Ny
(t), can be evaluated by the following expression:

r
2 Npr(®) (19
p=1
where N,:(t) denotes the number of germinated seeds
in sub-group p, and r represents the number of sub
-groups. Figure 6 shows the example where there are
two.sub-groups in the system. One sub-group has 20
seeds initially with n=8, and A =0.5/hr; the other sub
-group has 10 seeds initially with n=2, and A, =0.6/hr.
The qualitative behavior of the curve shown in Fig. 6 is
quite similar to that observed experimentally by Bould

NT(t) =
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Fig. 6. Simulated germination curve for the case when sub
-groups exist.

and Abrol (1981, Fig. 7), indicating the possibility of the
existing of sub-groups in their experiment.
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