Phylogenetic position of *Raphanus* in relation to *Brassica* species based on 5S rRNA spacer sequence data

Yau-Wen Yang^{1,3}, Pey-Feng Tseng¹, Pon-Yean Tai¹ and Cheng-Ju Chang²

¹Institute of Botany, Academia Sinica, Taipei, Taiwan, Republic of China ²Institute of Biomedical Science, Academia Sinica, Taiwan, Republic of China

(Received August 23, 1997; Accepted March 4, 1998)

Abstract. Based on RFLP analysis, two evolutionary lineages for *Brassica* diploid species have been proposed. These are (I) the "*nigra*" lineage and (II) the "*rapa/oleracea*" lineage. The phylogenetic relationship of *Raphanus* species to these two lineages is still unclear because chloroplast and mitochondrial DNA genomic restriction site variation suggests that *Raphanus* is more closely related to the "*rapa/oleracea*" lineage, whereas nuclear RFLPs and other lines of evidence suggest that *Raphanus* belongs to the "*nigra*" lineage. Here, we present evidence of the intergenic spacer of nuclear 5S rRNA to support that *Raphanus* is more closely related to the "*nigra*" lineage than to the "*rapa/oleracea*" lineage. Genetic polymorphism within species is also discussed.

Keywords: Brassica; Phylogeny; Raphanus; 5S rRNA spacer.

Introduction

Brassica is one of the most important plant groups, containing species widely used in our daily life. Brassica rapa (n=10), B. nigra (n=8), and B. oleracea (n=9) are the three basic groups with three amphidiploid species, B. napus (n=19), B. juncea (n=18) and B. carinata (n=17) derived from interspecific hybridization between pairs of these diploid species, B. rapa \times B. oleracea, B. rapa \times B. nigra and B. nigra \times B. oleracea, respectively (U, 1935). Based on chloroplast DNA (Warwick and Black, 1991), mitochondrial DNA (Palmer and Herbon, 1988), and nuclear DNA variation (Song et al., 1988; 1990) the phylogenetic relationships in Brassica and its related genera have been proposed. Brassica species can be divided into two evolutionary pathways: the "nigra" lineage and the "rapa/oleracea" lineage. Raphanus is thought to be closely related to the Brassica species. However, its relation to either lineage remains unsolved. Based on chloroplast and mitochondrial DNA restriction site variation (Warwick and Black, 1991; Palmer and Herbon, 1988), Raphanus was proposed to be more closely related to the "rapa/oleracea" lineage, but nuclear RFLPs and other RAPD data have suggested that Raphanus is more closely related to the "nigra" lineage (Song et al., 1990; Thormann et al., 1994).

5S rRNA genes are arranged in tandom arrays in the nuclear genome with highly conserved regions, separated by the non-transcribed intergenic spacer (IGS) that may vary in length or sequence between and even within species (Gerlach and Dyer, 1980; Long and Dawid, 1980). IGS evolves rapidly and is informative at the level of genus and species, so it has been chosen to study the phylogenetic relationships between and within genera (Appels et al., 1989, 1992; Baum and Appels, 1992; McIntyre et al., 1992; Moran et al., 1992; Playford et al., 1992; Reddy and Appels, 1989; Udovicic et al., 1995). Bhatia et al. (1993) demonstrated great polymorphism in IGS within *B. rapa* and related species. However, the phylogenetic relationship of *Raphanus* to these two lineages has not been studied using IGS sequences. Here we present data from the IGS of nuclear 5S rRNA to support the hypothesis that *Raphanus* is more closely related to the "*nigra*" lineage.

Materials and Methods

Plant Material

A total of twelve accessions of plant materials, which include seven accessions of *B. rapa*, one accession of *B. oleracea*, two accessions of *R. sativus*, one accession of *Rorippa indica* and one accession of *Lepidium virginicum* were used for PCR amplification of 5S rRNA sequences (Table 1). Among them, four accessions were provided by the Asian Vegetable Research and Development Center (AVRDC), and rest of them were collected by the authors. Also, another six 5S rRNA sequences from *B. rapa* (X60723), *Eruca sativa* (X63524), *B. nigra* (X65710, X65711), *Sinapis alba* (X56866) and *Arabidopsis athaliana* (M65137) were used in this study (Bhatia et al., 1993; Campell et al., 1992; Capesius, 1991; 1993; Singh et al., 1994).

³Corresponding author.

Table 1. Different accessions of Brassica and its related species used in phylogenetic analysis of 5S rRNA sequence.

Abbr.	Species	Subspecies	Cultivar or accession	Sources		
Brc1	B. rapa	chinensis	20 days Pai-Tai	Sc ^a		
Brc2	B. rapa	chinensis	Chin-Chiang Pai-Tai	Sc ^a		
Brc3	B. rapa	chinensis	Peng-Hop Pai-tai	В00049 ^ь		
Brp1	B. rapa	pekinensis	Chinese cabbage	Sca		
Brp2	B. rapa	pekinensis	Chinese head cabbage	Sca		
Brp3	B. rapa	pekinensis	Dwarf leaf Chinese cabbage	В00026 ^ь		
Brr1	B. rapa	rapifera	Goseki	В00475 ^ь		
Brf	B. rapa		Field mustard	X60723°		
Boc	B. oleracea	capitata		Sc ^a		
Rs1	R. sativus	-	Mei Hwa radish	Sca		
Rs2	R. sativus		Meei-Nong radish	Sca		
Es	E. sativa		-	X63524°		
Bn1	B. nigra			X65711°		
Bn2	B. nigra			X65710°		
Sa	S. alba			X56866°		
Ri	R. indica			Sc ^a		
At	A. thalina			M65137°		
Lv	L. virginicum			Sc ^a		

 $^{a}Sc = Collected by the authors.$

^bAccession no. from AVRDC.

^cAccession no. for 5S rRNA sequence from Genbank.

DNA Isolation and Amplification

Genomic DNA was isolated from 2 g fresh leaves taken from 2-3 plants for each accession grown in the growth chamber according to the method described by Junghans and Metzlaff (1990). This DNA was then used as template for PCR amplification of 5S rRNA repeat based on two primers from Sinapis alba (Capesius, 1991). For PCR reaction, DNA was first denatured at 94°C for 4 min prior to the start of each PCR cycle. The complete PCR mixtures in 100 ul contained 100 ng DNA containing 10 mM Tris HCl, pH 8.3, 50 mM KCl, 0.1 mg/ml gelatin, 1.5 mM MgCl₂, 0.1 mM dNTP, 0.2 µM primer, and 0.5 unit taq polymerase. Amplification was performed using DNA Thermal Cycler (Perkin Elmer Cetus, Model 2400). DNAs were amplified for 35 cycles of 1 min at 94°C, 45 sec at 55°C, 1 min at 72°C and one final cycle of 5 min at 72°C. The PCR products were then run on 1% agarose gels. Amplified bands representing monomer and dimer of the 5S rRNA genes were cut and purified with JETpure kit (Genomed Inc, NC, USA). These fragments were then ligated with pBluescript II, Sk- (Stratagene, CA, USA) and transformed into E. coli XL-1 cells. The clones were then sequenced with ABI 373 automated sequencer (Applied Biosystem, NJ, USA).

Data Analysis

The IGS sequences from different accessions were aligned using the "MEGALIGN" program of Lasergene system (DNASTAR Inc. Madison, WI, USA) and manual adjustment. The distance between each pair of sequences (OTUs) was then determined by Kimura's two-parameter method (1980) using the "Mega" program (Kumar et al., 1993). Bootstrap values were also obtained with the same program.

Results and Discussion

The 5S rRNA gene in Brassica and related genera is 119 bp long. (Bhatia et al., 1993; Campell et al., 1992; Capesius, 1991; 1993; Singh et al., 1994). A forward primer, 5'-GGATGGGTGACCTCCCGGGAAGTCC-3' (positions from 81 to 105 of 5S rRNA) and a reverse primer, 5'-CGCTTAACTGCGGAGTTCTGATGGG-3' (positions from 58 to 34 of 5S rRNA gene) (Capesius, 1991) were used for amplification of 5S rRNA genes. The positive clones containing the regions from position 81 to 119 of 5S rRNA, IGS, and the regions from position 1 to 58 of 5S rRNA were sequenced and aligned with other published DNA sequences in the IGS region (Figure 1). Immediately following the 3'end of 5S RNA, there is a T-rich region of about 20 bp (positions 1 to 31) thought to be required for termination of the 5S rRNA (Hemleben and Werts, 1988). A GC motif with a consensus sequence, (G/T)GGGCGG(G/A)(G/A)(C/T), which may be involved in the regulation of transcription (Bhatia et al., 1993; Hart and Folk, 1982; Sorensen and Frederiksen, 1991) was located in the positions from 159 to 174. A putative TATA box, ATATATA, critical in the initiation of transcription of 5S rRNA genes (Korn, 1982; Selker et al., 1986), is found 5' to the 5S rRNA from the position 394 to 400. The IGS in the Brassica and its related genera ranges from 367 to 399 nucleotides, and the most divergent region is from position 206 to 387. In the polymorphic region, Rs1 and Rs2 of R. sativus were found to share the same nucleotide with "Bn1" and "Bn2" of B. nigra and "Sa" of S. alba in many locations (positions 36–38, 41, 127–128, 168, 170, 172, 215, 235, 249, 251, 258, 275-276, 289-290, 294, 360–363, 365–366, 370), while these two accessions of R. sativus were found to share same nucleotides with accessions of B. rapa or B. oleracea in fewer locations

Majority TTTTTATT	- <u> </u>		ГТТТА – – САС	CTTAAAACGAGTC
	10	20	30	40 50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T T	Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: constraint of the system Image: cons	$ \begin{array}{c} \mathbf{I} \\ \mathbf{F} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{A} \\ \mathbf{A} \mathbf{T} \mathbf{G} \mathbf{C} \mathbf{A} \mathbf{T} \\ \mathbf{T} \mathbf{T} \mathbf{A} \mathbf{A} \mathbf{T} \mathbf{G} \mathbf{C} \mathbf{A} \mathbf{T} \\ \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{A} \\ \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{C} \\ \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{A} \\ \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T}$	C T - A A A A C G A G T C 37 C T - A A A A C G A G T C 42 C T - A A A A C G A G T C 42 C T - A A A A C G A G T C 38 C T T A A A A C G A G T C 39 C T - A A A A C G A G T C 38 C T - A A A A C G A G T C 38 C T - A A A A C G A G T C 38 C T - A A A A C G A G T C 38 C T - A A A A C G A G T C 38 C T - A A A A C G A G T C 38 C T - A A A A C G A G T C 37 C T - A A A A C G A G T C 34 C T - A A A A C G A G T C 34 C T - A A A A C G A G T C 34 C T - A A A A C G A G T C 34 C T - A A A A C G A G T C 34 C T - A A A A C G T T T C 34 T T T G A A A - A G G C C 37 T T G G A A A - A C G T T 34 T T T G A A A C G G T T 34 T T T G A A A C G G G T C 35 T T G A G A A A A C G G T C 35
AT.SEQ TCTTTATA			. T T T <u>T T T</u>	
Majority TA AACT	60	70	AACCGTGAG 80	G - AACTACGTCGC
BRC2.SEQ T A - A A C T BRC3.SEQ T A - A A A T BRP1.SEQ T A - A A C T BRP2.SEQ T A - A A C T BRP3.SEQ T A - A A C T BRF.SEQ T A - A A C T BRF.SEQ T A - A A C T BRR1.SEQ T A - A A C T BC.SEQ T G - A A C T SA.SEQ T C - A A C T BN1.SEQ T C - A A C T BN1.SEQ T C - A A C T BN1.SEQ T C - A C T RS1.SEQ T C - A C T RS2.SEQ A A - A C T RI.SEQ T C - G C T T AT.SEQ A A - A A C T	T G A A A A C C C C T G G A A A A C C T T G G A A A A C C T T G G A A A A C C T T G A A A A A C C T T G A A A A A A C C T T G A A A A A C C T T G G A A A A C C T T G G A A A A C C T T T G G A A A A C C T C T C T A A A A C C C T C T	C A T A C T T T G C A T A C T T T G C A T A C T T T G C A T A A C T T T G C A T A A C T T T G C A T A A C T T T G C A T A C T T T G C A T A C T T T G C A T A C T T T G C A T A C T T T G C A T A C T T T T C A T A C <td>A A C C G T G A G G A A C C G T G A G G A A C C G T G A G G A A C C G T G A G G A A C C G T G A G G A A C C G T G G G A G <td< td=""><td>$\begin{array}{c} 90 \\ \hline \\ G & - & A & A & A & T & A & T & G & T & C & G & C & 84 \\ \hline \\ G & - & A & A & A & T & A & T & G & T & C & G & C & 89 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 83 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 89 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 87 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & C & G & 83 \\ \hline \\ - & - & A & A & C & T & A & C & G & C & C & G & 84 \\ \hline \\ \hline \\ G & - & A & A & C & T & A & C & G & C & C & G & G & 81 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & C & G & C & 81 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & G & G & T & 99 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & G & G & 79 \\ \hline \\ \hline \\ C & C & A & A & A & C & T & T & G & G & C & A & - & 80 \\ \end{array}$</td></td<></td>	A A C C G T G A G G A A C C G T G A G G A A C C G T G A G G A A C C G T G A G G A A C C G T G A G G A A C C G T G G G A G <td< td=""><td>$\begin{array}{c} 90 \\ \hline \\ G & - & A & A & A & T & A & T & G & T & C & G & C & 84 \\ \hline \\ G & - & A & A & A & T & A & T & G & T & C & G & C & 89 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 83 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 89 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 87 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & C & G & 83 \\ \hline \\ - & - & A & A & C & T & A & C & G & C & C & G & 84 \\ \hline \\ \hline \\ G & - & A & A & C & T & A & C & G & C & C & G & G & 81 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & C & G & C & 81 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & G & G & T & 99 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & G & G & 79 \\ \hline \\ \hline \\ C & C & A & A & A & C & T & T & G & G & C & A & - & 80 \\ \end{array}$</td></td<>	$\begin{array}{c} 90 \\ \hline \\ G & - & A & A & A & T & A & T & G & T & C & G & C & 84 \\ \hline \\ G & - & A & A & A & T & A & T & G & T & C & G & C & 89 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 83 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 85 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 89 \\ \hline \\ G & - & A & A & C & T & A & C & G & T & C & G & C & 87 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & C & G & 83 \\ \hline \\ - & - & A & A & C & T & A & C & G & C & C & G & 84 \\ \hline \\ \hline \\ G & - & A & A & C & T & A & C & G & C & C & G & G & 81 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & C & G & C & 81 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & G & G & T & 99 \\ \hline \\ G & - & A & A & C & T & A & C & G & C & G & G & 79 \\ \hline \\ \hline \\ C & C & A & A & A & C & T & T & G & G & C & A & - & 80 \\ \end{array}$
Majority <u>- C C A T A G C</u>	ACCATTTCG 110	GAAAGCCCCAG 120		TAA-TGGGCGG
BRC2.SEQ - C C A T A G C $BRC3.SEQ - C C A T A G C$ $BRP1.SEQ - C C A T A G C$ $BRP2.SEQ - C C A T A G C$ $BRP3.SEQ - C C A T A G C$ $BRF.SEQ - C C A T A G C$ $BRF.SEQ - C C A T A G C$ $BRR1.SEQ - C A T A G C$ $BCC.SEQ - C C A T A G C$ $BCS.SEQ T C C A T A G C$ $BN1.SEQ - C C A T A G C$ $BN1.SEQ - C C A T A G C$ $BN1.SEQ - C C A T A G C$ $BN1.SEQ - C C A T A G C$ $BN1.SEQ - C C A T A G C$ $BN1.SEQ - C C A T A G C$ $BN1.SEQ - C C A T A G C$ $BN1.SEQ - C C A T A G C$ $BN1.SEQ - C C A T A G C$ $BN2.SEQ - C C A T A G C$ $BN2.SEQ - C C A T A G C$ $RS1.SEQ - C C A C A G C$ $RS2.SEQ - C C A T A A C$	$\begin{bmatrix} \mathbf{I} \\ \mathbf{A} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{C} $	G A A G C C C A G G A A G C C C A G G A A G C C C A G G A A G C C C A G G A A G C C C A G G A A G C C C A G G A A G C C C A G G A A G C C C A G G A A G C C C A G G A A G G C C C A G A A C G C C C A G A A G C C C C <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>140 150 T A - T G - - G C G 127 T A - T G - - G G C G 132 T A - T G - - G G C G 128 T A - T G - G G C G 128 T A - T G - G G C G 128 T A - T G - G G C G 128 T A - T G - G G G 128 T A - T G - G G G 128 T A A T G - G G G 128 126 T A A T T <t< td=""></t<></td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	140 150 T A - T G - - G C G 127 T A - T G - - G G C G 132 T A - T G - - G G C G 128 T A - T G - G G C G 128 T A - T G - G G C G 128 T A - T G - G G C G 128 T A - T G - G G G 128 T A - T G - G G G 128 T A A T G - G G G 128 126 T A A T T <t< td=""></t<>

lajority <u>- </u>	
	169
RC2.SEQ - Т G A A T A G G G G G G G G G G G G G G G	175
	170
RP2.SEQ – ТGAATAGGGGGG – – – – – СGC – ААТТТТТСССВСС – ПСАААТТСАВССВТТТ –	171 170
RP3.SEQ - TGAATAGGGGGG CGC - AATTTTTCGGGCC - TCAAATTCAGCCGTTT RF.SEQ - GGAATAGGGGGG CGC - AATTTTTCGGGCC - TCAAATTCAGCCGTTT	170
RR1.SEQ - T G A A T A G G G G G G C G C - A A T T T T T C G G G C - T C A A A T T C A G C C T T T T	170
OC.SEQ - T G A A T A G G C G T G G A A A T T T T T C G G G C - C T A A A T T C A G C C G T T T	174
S.SEQ СТВАТТААВССС СССССАТТТТССССАСССАААТТССССТССТТ А.SEQ - ТСААТАСССС ТССССАСТТТТССАСС - ССАААТТСАССССТТТ	171
N1.SEQ - TGAATGGGGGGTGGCCATTTTTCAGGC-CAAATTCGGCCGTTT	168
N2.SEQ – ТВААТВВВВС – – – – – ТВВССАТТТТТСАВВС – СААААТТСВВССВТТТ : S1.SEQ – ТВААТАВВСС – – – – – ТВВССАТТТТТСВАВС – ССАААТТСАВССВТТТ :	162
S2. SEQ - TGAATAGGGC TGGCGATTTTTCGACC - CCAAATTCTGCCGTTT	166 167
V. SEQ TGTAACAAAGTA-CCACTGGCCCCGTTTTCGACCTCCAATTTTGAGTTTTAA:	197
	174 177
ajority <u>- TG - ACCCTCAAACGGGCTGCGGAAAGTTATGGCCCGTAAAAAAG - ATCG</u>	
210 220 230 240 250	
RC1.SEQ - TG - ACCCTCAAACGGGTTGCGGAAAATTATGGCACGTAAAAAAG - ATCG 2	216
RC2.SEQ - TG - ACCCTCAAACGGGCTGCGGAAAGTTTTGGCACGCAAAAAAC - A T CC C	222
RC3. SEQ - TG - A C C C T C A G A C A G G C T G C G A A A G T T A T G G C A C G T A A A A A A G - A T C G 2 RP1. SEQ - T G - A C C T T C A A A C G G G C T G C G G A A A G T T A T G G C A C G T A A A A A A G - A T C G 2	217
RP2.SEQ - TG - ACCCTCAAACGGGCTGCGGAAAGTTATGGCACGTAAAAAAC- ACCCC	217
RP3. SEQ - T G - A C C A T C A G A C G G G C T G C G G A A A G T T A T G G C A C G T A A A A A A G - A T C G 2 RF. SEQ - G G - A C C C T C A A A C G G G C T G C G G A A A G T T A T G G C A C G T A A A A A G A - A T C G 2	217
RR1.SEQ - TG - ACCCTCAAACGGGCTGCGGAAAGTTGTGGCACGTAAAAAAA	217
	222 219
A.SEQ – TG – AGCCTCAAAAAGGCTGTAAAACATTACGGACCGTAAATTAG – A TGG 2	216
	215 209
S1. SEQ - A T - A G C C T C A A A C A G G C T G C C C A A T G T T A C G G G C T G T G A A C G A G - A T G C C C	213
	214 245
I. SEQ - TGTGGTTTTTTGGGAGCCATTTTC-TAATT <u>CTA</u> -CGG <u>CTA</u> TAAAGACC <u>T</u> A 2	221
T. SEQ - AGTACTTTTTCGGGCATTTTCGTGATTTGGGCTATATTACGGACCCA 2	224
ajority A A A G C G G A T T T T C A G G G T G T T T T T G A T G C T T T T T A A C G C C G T T A A C C T C	
RC1. SEQ А А А G С G G A T T C T C A A G G T G T T T T T T G A T G C T T T T T T A A C G C C G T T A A C C T C 2 RC2. SEQ A A A G C G G A T T C T C A G G G T G T T T T T G A T G C T T T T T G A A C G C C A T T A A C C T C 2	:66
RC3.SEQ A A A G C G G A T T C T C A A G G T G T T T T T G A T G C T T T C T T A A C G C C G T T A A C C T C 2	267
RP1. SEQ A A A G C A G A T T C T C A A G G T G T T T T T T G A T G C T T T T T A A C G C C G T T A A C - T C 2 RP2. SEQ A A A G C G G A T T T T C A A G G T G T T T T T G A T G C T T T C T T A A C G C C G T T A A C C T C 2	267
RP3. SEQAAAGCGGATTTTCAAGGTGTTTTTGATGATTTTAACCCCCCTTAACCCCC	
RF. SEQ A A A G C G G A T T C T C A A G G T G T T T T T G A T G C T T T T T A C G C C G T T A A C C T C 2 RR1. SEQ A A A G C G G A T T C T C A A G G T G T T T T T G A T G C T T T T T A A C G C C G T T A A C C T C 2	
OC. SEQ CAATCGGATTTTCAGGTTGTTTTTGATGCTTTCTTAACGTCATTAACCTC 2	.67 :72
S. SEQ AATCTGGGTTTTTCCGTGTGTTATCATTGAATTCTACTTAAATCTC2 A. SEQ GATAAGTTGTTTCTGGGTGTTATTTTCATTTTCTACATCAATTCAAT	64
NI.SEQ G А ТТ С ААТА ТТТС Т G G G T G T T T T T T T T T T T C C T T T T	63
N2.SEQ GATTICAATATTTCTGGGTGTTTTTTTTTTTCCTTTTTCTACATCCATTC2 S1.SEQ GATCCGCTGTTTCCCGGGTGCTTTTTTCCCATTCCATCATCATCCATTC2	57
52 . SEQ [G] A [T_A] C G [C T G [T T T C [C] G G G T G T] T T T T T T G C [A G T III T II C C IT A T A III C A A III A III C C IT A T A III C A A III A III C C IT A T A III C A A III A III C C III A III C A A III A III C	60
V.SEQ AACGGACTTTTTTTCTCGTGGTTCCGAGGTTTTCGGAGAGCCCT2 I.SEQ GAACCTTGTGTTTTACGACTGGTTTTCTAATATGCTCAACAACTAAGAATC2	88
I.SEQ AAATTACTTGTTCAAGCATTGTTTTCCAAGCAACTAAGAATC 2	/⊥ 74

	1	AACGGCAAGAA	A A A T C A	TGTG
$\begin{array}{c} 310 \\ \hline \\ BRC1.SEQ G A T G A A C T T T T T T T C G \\ BRC2.SEQ G A C G C A C T T T T T T T C G \\ BRC3.SEQ G A T G C A C T T T T T T T C G \\ BRP1.SEQ G A T G C A C T T T T T T C G \\ BRP3.SEQ G A T G C A C T T T T T T C G \\ BRP3.SEQ G A T G C A C T T T T T T C G \\ BRR1.SEQ G A T G C A C T T T T T T C G \\ BRR1.SEQ G A T G C A C T T T T T T C G \\ BRC3.SEQ G A T G C A C T T T T T T C G \\ BRC4.SEQ G A T G C A C T T T T T T C G \\ BRC5.SEQ G A T G C A C T T T T T T C G \\ BRC5.SEQ G A T G C A C T T T T T C G G \\ BOC.SEQ G A T G C A C T T T T T A C C G G \\ SA.SEQ T A T C T A C A A T T T T A A T T G T \\ BN1.SEQ C A T C T C A T T T A A T T G T \\ BN2.SEQ C A T C T C A T C T T A A T T G T \\ BN2.SEQ C A T C T C A T C T T A A T T G T \\ BN2.SEQ C A T C C A T C T T T A A T T G T \\ BN2.SEQ C A T C C T C T T T A A T T G T \\ BN2.SEQ C A T C C T T T T A A T T G T \\ BN2.SEQ C A T C C T T T T T A A T T G T \\ BN2.SEQ C A T C C T T T T T A A T T G T \\ BN2.SEQ C A T C C T T T T T A A T T G T \\ BN2.SEQ C A T C C T T T T T T A A T T G T \\ BN2.SEQ C A T C C T T T T T T T T T T T T T T T$	320 2 C T G G A A A C A A 5 C T C G A A A C A A 5 C T C G A A A C A A 5 C T C G A A A C A A 5 C T C G A A A C A A 5 C T C G A A A C A A 5 C T C G A A A C A A 5 C T C G A A A C A A 5 C T C G A A A C A A 5 C T C G A A A C A A 6 C T C G A A A C A A 6 C T C G A A A C A A 6 C T C G A A A C A A 6 C T C G A A A C A A 6 C T C G A A A C A A 6 C T C G A A A C A A 6 C T C G A A A C A A 6 C T C G A A A C A A 7 C G A A A C A A 8 C T G C A A A C A A 9 A A A A A 9 A A A A A A 9 A A A A A A 9 A A A A A A 9 A A A A A A A 9 A A A A A A A 9 A A A A A A A 9 A A A A A A A 9 A A A A A A A A 9 A A A A A A A A 9 A A A A A A A A 9 A A A A A A A A A A 9 A A A A A A A A A A A 9 A A A A A A A A A A A A 9 A A A A A A A A A A A A A A A A A A A	$\begin{array}{c} 330\\ \hline \\ A \ A \ C \ G \ G \ C \ A \ A \ G \ A \ A \\ A \ T \ T \ G \ G \ T \ A \ A \ G \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ G \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ G \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ G \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ G \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \ A \\ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \ A \ A \ A \ A \ C \ G \ G \ C \ A \ A \ A \ A \ A \ A \ A \ C \ C$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	350 T G C G 310 T G T G 317 T G C G 311 T G T G 311 T G C G 311 T G C G 311 T G C G 311 T G T G 310 T G T G 311 T G T G 311 T G T G 311 T G C G 311 T G C G 311 A G C G 304 A G T G 306 A G T G 300
RS2.SEQ TA TACATTTTGATGC LV.SEQ GATGTCTTCTCC RI.SEQ AAAAGCAACCAG AT.SEQ GTTAAGACTAG MajorityGGCCCCACGGCCTTA 360 BRC1.SEQCGCCCCAAGGCCTTA BRC2.SEQGGTCCCACGGCCTCA	A T G G A A A A A T G T - G A C C C A C C G A A C G T A T G G C A C T T G G - A T 370 C A C T T G G - A T C A C	$T \land C \land A \land A$	A A A A A A C T T A G C A C A A C T A T T A G T C G C T A C A T A G C C G A A G G A T A 390 A A G G A T A	$ \begin{array}{c} \mathbf{G} \mathbf{G} \mathbf{T} \mathbf{G} 310 \\ \mathbf{A} \mathbf{G} \mathbf{T} \mathbf{G} 330 \\ \mathbf{A} \mathbf{G} \mathbf{T} \mathbf{G} 315 \\ \mathbf{G} \mathbf{G} \mathbf{T} \mathbf{G} 310 \\ \hline \mathbf{T} \mathbf{A} \mathbf{T} \mathbf{A} \\ \hline 400 \\ \mathbf{T} \mathbf{A} \mathbf{T} \mathbf{A} 355 \\ \mathbf{T} \mathbf{G} \mathbf{T} \mathbf{A} 354 \end{array} $
BRRI. SEQ G G C C C C A C G G C C T T A BOC. SEQ G G C C C C A C G G C C T T A ES. SEQ G G T C C C A C G C T A A T C SA. SEQ G G A C T C A C G C A A A T C EN1. SEQ G G T C C C A C G C A A A T C BN2. SEQ G G T C C C A C G C A A A T C RS1. SEQ G G C C A C A C G C A A A T C RS2. SEQ G G C C A C A C G C A A A T C LV. SEQ G G A C T C G C A G C A A T RI. SEQ G G A C T C G C A G C A A G G RI. SEQ G G A C C C A C G C G A A T AT. SEQ G G A C C C A C G C G A A T	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- - A A G G A T G - - A A G G A T A - - A A G G A T A - - - A A G G A T A - - - A A G G A T A - - - A A G G A T A - - A A G G A T A A G A T A A G G A T A A G G A T A A G G A T A A G G A T A A G G A T A A G G A T A A G G A T <	T A T A 356 T A T A 356 T A T A 356 T A T A 354 T A T A 356 T A T A 356 T A T G 363 T A T G 350 T A T G 350 T A T A 345 T A T G 350 T A T G 350 T A T G 350 T A T G 350
Majority GAATCGAGAGTGATG 410	<u>ТАСТААС</u> 420			
$ \begin{array}{c} \text{BRC1.} \text{SEQ} \ \text{G} \ \text{A} \ \text{A} \ \text{A} \ \text{C} \ \text{G} \ \text{A} \ \text{G} \ \text{G}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			377 376 378 378 378 378 376 378 385 377 372 376 367 372 376 367 372 378 399 382 378

Figure 1. Alignment of IGS sequences begins at the position 1 and ends at the position 422. Different OTUs are indicated in Table 1.

(positions 45–46, 67, 122–123, 157, 227, 328, 332–333, 337, 353, 375). For example, in location 38, all accessions of *B. rapa* and *B. oleracea* have nucleotide "C," while all accessions of *B. nigra, S. alba,* and *R. sativus* have nucleotide "T."

The distances between different OTUs (sequences) were determined at the level of nucleotide substitution using Kimura's two-parameter method (Table 2). The neighbor joining method (Saito and Nei, 1987) was then used to construct a phylogenetic tree among these OTUs and the bootstrap test was performed to determine the bootstrap confidence level (BCL) for each node of the constructed tree (Figure 2). Great polymorphism was observed within *B. rapa*; however, the distances between OTUs within species are always smaller than those between species (Table 2 and Figure 2). Two accessions (Brp2 and Brp3) of ssp. *pekinensis* are clustered with two accessions of ssp. *chinensis* (Brc1 and Brc3) before clustering with Bcf; then

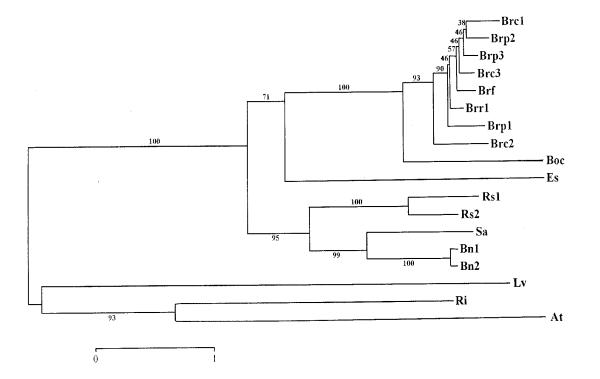


Figure 2. A NJ tree is constructed using the sequence divergences estimated with Kimura's two-parameter method. BCL values are labeled to indicate the percentage of trees that support the node.

 Table 2. Number of substitutions per nucleotide site in the intergenic spacer of 5S rRNA genes calculated with Kimura's two-parameter method (Kimura, 1980).

OTUs	Brc1	Brc2	Brc3	Brp1	Brp2	Brp3	Brr1	Brf	Boc	Rs1	Rs2	Es	Bn1	Bn2	Sa	Ri	At	Lv
Brc1																		
Brc2	0.095																	
Brc3	0.046	0.083																
Brp1	0.058	0.089	0.055															
Brp2	0.046	0.095	0.038	0.072														
Brp3	0.043	0.088	0.027	0.063	0.032													
Brr1	0.052	0.068	0.027	0.043	0.043	0.038												
Brf	0.052	0.083	0.032	0.055	0.044	0.035	0.032											
Boc	0.202	0.199	0.181	0.181	0.191	0.177	0.167	0.176										
Rs1	0.409	0.396	0.398	0.390	0.403	0.417	0.403	0.401	0.387									
Rs2	0.391	0.395	0.385	0.381	0.385	0.398	0.380	0.378	0.382	0.103								
Es	0.402	0.379	0.368	0.403	0.359	0.382	0.368	0.386	0.463	0.430	0.364							
Bn1	0.384	0.392	0.369	0.364	0.369	0.387	0.369	0.388	0.389	0.269	0.266	0.418						
Bn2	0.383	0.392	0.368	0.363	0.377	0.386	0.368	0.373	0.385	0.274	0.272	0.415	0.011					
Sa	0.407	0.402	0.378	0.383	0.401	0.396	0.387	0.396	0.403	0.274	0.246	0.428	0.165	0.165				
Ri	0.806	0.728	0.737	0.744	0.759	0.750	0.730	0.768	0.752	0.760	0.731	0.803	0.667	0.683	0.649			
At	0.812	0.796	0.833	0.790	0.804	0.781	0.798	0.794	0.877	0.819	0.798	0.884	0.834	0.841	0.909	0.544		
Lv	0.852	0.771	0.774	0.794	0.793	0.788	0.754	0.773	0.832	0.793	0.746	0.876	0.773	0.767	0.766	0.814	0.742	

they were clustered with Brr1 of ssp. rapifera before they met Brp1 of ssp. pekinensis. Brc2 of ssp. chinensis is located outside these 7 OTUs. Since most values of BCL are low for these accessions within B. rapa, the phylogenetic relationship among subspecies is hard to determine on the basis of this DNA sequence. The result may be due to intensive cultivation and occasional outcrossing between different subspecies in *B. rapa*. Nevertheless, 8 OTUs from B. rapa were grouped into one composite OTU that is significantly different from the other OTUs in this study. As shown by RFLP data (Song et al., 1988; 1990; Thormann et al., 1994), B. oleracea (Boc) is more closely related to *B. rapa* than to *B. nigra*. Two accessions (Bn1 and Bn2) of B. nigra were clustered with "Sa" of Sinapis alba before they met two accessions (Rs1 and Rs2) of Raphanus sativus (Figure 2). The close relation between S. alba and B. nigra is also reported based on RFLP data (Warwick and Black, 1991). By using Arabidopsis athaliana, Rorippa indica, and Lepidium virginicum as outgroups, it was clearly shown that Raphanus sativus is more closely related to the B. nigra lineage than to the B. rapa/oleracea lineage. In Table 2, the average distance between R. sativus and *B. rapa* is also significantly larger than that between *R. sativus* and *B. nigra* $(0.396 \pm 0.010 \text{ vs.} 0.270 \pm 0.004)$. In addition, similar phylogenetic relationships among these OTUs were also observed in the maximum parsimony tree based on the branch and bound search method using the MEGA program (Kumar et al., 1993) (results not shown). Also, data analysis based on the nucleotide sequences of the 18S - 25S spacer region showed a similar result (unpublished data). The discrepancy between nuclear DNA sequence data and chloroplast (or mitochondrial) RFLP data suggests that R. sativus may have been derived from hybridization between species belonging to different lineages, as Song et al. (1990) proposed. If this hypothesis is true, two distinct types of IGS must exist in the *Raphanus* with one close to *B. nigra* and the other close to B. oleracea/rapa since nuclear DNA sequences are biparentally inherited. However, no such nuclear DNA sequences in Raphanus have been found to date.

In conclusion, the IGS of the 5S rRNA gene has been used succesfully to illustrate the phylogenetic relationships among *Brasssica rapa* and its related species. The phylogenetic position of *R. sativus* to the "*nigra*" lineage was demostrated. However, the origin of *R. sativus* may need to be further studied by using more data from chloroplast DNA sequences and other nuclear markers to test the views presented by Palmer and Herbon (1988) and Song et al. (1990). In addition, due to the intensive cultivation or hybridization between cultivars or subspecies, it is hard to determine the phylogenetic relationship among different subspecies within *B. rapa* based on this DNA sequence.

Acknowledgements. We thank Dr. H.H. Ho, Mr. L.-C. Chang, Y.-K. Huang, Dr. H.F. Yen and Dr. C.H. Tsou for giving us valuable advice, and Miss Y.-J. Peng for technical assistance in DNA sequencing in this research. This work is supported in part by National Science Council and Academia Sinca, Taiwan.

Literature Cited

- Appels, R., B.R. Baum, and B.C. Clarke. 1992. The 5S DNA units of bread wheat (*Triticum aestivum*). Plant Syst. Evol. 183: 183–194.
- Appels, R., P. Reddy, C.L. McIntyre, L.B. Moran, O.H. Frankel, and B.C. Clarke. 1989. The molecular-cytogenetic analysis of grasses and its applications to studying relationships among species of the Triticeae. Genome **31**: 122–133.
- Baum, B.R. and R. Appels. 1992. Evolutionary change at the 5S Dna loci of species in the Triticeae. Plant Syst. Evol. 183: 195–208.
- Bhatia, S., K. Singh, V. Jagannathan, and M. Lakshmikumaran. 1993. Organization and sequence analysis of the 5S rRNA genes in *Brassica campestris*. Plant Sci. **92:** 47–55.
- Campell, B.R., Y. Song, T.E. Posch, C.A. Cullis, and C.D. Town. 1992. Sequence and organization of 5S ribosomal RNAencoding genes of *Arabidopsis thaliana*. Gene 112: 225–228.
- Capesius, I. 1991. Sequence of the 5S rRNA gene from *Sinapis alba*. Plant Mol. Biol. **17**: 169–170.
- Capesius, I. 1993. Sequence of the 5S rRNA gene from *Brassica nigra* and its relation to other 5S rRNA genes from Brassicaceae. J. Plant Physiol. **142**: 112–114.
- Gerlach, W.L. and T.A. Dyer. 1980. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 8: 4851–4865.
- Hart, R.P. and W.R. Folk. 1982. Structure and organization of a mamalian 5S gene cluster. J. Biol. Chem. 257: 11706– 11711.
- Hemleben, V. and D. Werts. 1988. Sequence organization and putative regulatory elements in the 5S rRNA genes of two higher plants (*Vigna radiata* and *Matthiola incana*). Gene 62: 165–169.
- Junghans, H. and M. Metzlaff. 1990. A simple and rapid method for the preparation of total plant DNA. Biotechniques 8: 176.
- Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.
- Korn, L.J. 1982. Transcription of *Xenopus* 5S ribosomal RNA genes. Nature 295: 101–105.
- Kumar, S., K. Tamura, and M. Nei. 1993. MEGA-Molecular Evolutionary Genetics Analysis. Version 1.01. Penn. State Uni. University Park, PA, USA.
- Long, E.O. and I.B. Dawid. 1980. Repeated genes in eukaryotes. Annu. Rev. Biochem. **49:** 727–764.
- McIntyre, C.L., B. Winberg, K. Houchins, R. Appels, and B.R. Baum. 1992. Relationships between *Oryza species* (Poaceae) based on 5S DNA sequences. Plant Syst. Evol. 183: 249–264.
- Moran, G.F., D. Smith, J.C. Bell, and R. Appels. 1992. The 5S RNA genes in *Pinus radiata* and the spacer region as a probe for relationships between *Pinus* species. Plant Syst. Evol. 183: 209–221.
- Palmer, J.D. and L.A. Herbon. 1988. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 28: 87–97.
- Playford, J., R. Appels, and B.R. Baum. 1992. The 5S DNA units of Acacia species (Mimosaceae). Plant Syst. Evol. 183:

235-247.

- Reddy, P. and R. Appels. 1989. A second locus for the 5S multigene family in *Secale* L: Sequence divergence in two
- lineages of the family. Genome **32:** 456–467. Saito, N. and M. Nei. 1987. The neighbor-joining method: a new
- method for reconstructing phylogenetic trees. Mol. Biol. Evol. **4:** 406–425.
- Selker, E.U., E. Morzycka-Wroblewska, J.N. Stevens, and R.L. Metzenberg. 1986. An upstream signal is required for *in vitro* transcription of *Neurospora* 5S RNA genes. Mol. Gen. Genet. 205: 189–192.
- Singh, K., S. Bhatia, and M. Lakshmikumaran. 1994. Novel variants of the 5S rRNA genes in *Eruca sativa*. Genome 37: 121–128.
- Song, K.M., T.C. Osborn, and P.H. Williams. 1988. *Brassica* taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 1. Genome evolution of diploid and amphidiploid species. Theor. Appl. Genet. **75:** 784–794.
- Song, K.M., T.C. Osborn, and P.H. Williams. 1990. *Brassica* taxonomy based on nuclear restriction fragment length poly-

morphisms (RFLPs) 3. Genome relationships in *Brassica* and related genera and the origin of *B. oleracea* and *B. rapa* (syn. *campestris*). Theor. Appl. Genet. **76**: 497–506.

- Sorensen, P.D. and S. Frederiksen. 1991. Characterization of human 5S rRNA genes. Nucleic Acids Res. 19: 4147–4151.
- Thormann, C.E., M.E. Ferreira, L.E.A. Camargo, J.G. Tivang, and T.C. Osborn. 1994. Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor. Appl. Genet. 88: 973–980.
- U, N. 1935. Genome analysis in *Brassica* with special reference to the experimental formation of *B. napus* and peculiar mode of fertilization. Jpn. J. Bot. **7:** 389–452.
- Udovicic, F., G.I. McFadden, and P.Y. Ladiges. 1995. Phylogeny of *Eucalyptus* and *Angophora* based on 5S rDNA spacer sequence data. Mol. Phylo. and Evol. **4:** 247–256.
- Warwick, S.I. and L.D. Black. 1991. Molecular systematics of *Brassica* and allied genera (Subtribe Brassicinae, Brassiceae)- Chloroplast genome and cytodeme congruence. Theor. Appl. Genet. 82: 81–92.

2

\mathfrak{X} 5S rRNA spacer <^a \mathfrak{Ps}^- % \mathfrak{k}^- 'ME >a⁻ · ''*/S¶; '''; % \mathfrak{k}^- «Y

$$\begin{array}{c} \bullet \Box \downarrow / & \stackrel{1}{ \cdot \pounds } & \stackrel{1}{ \cdot I } &$$

^` ;G ¿,&t^ «Y;F ‰t~ ;KE ≻a~ ;F 5S rRNA spacer ; C