Antioxidant and antihypertensive activities of acteoside and its analogs

Chao-Hsiang CHEN¹,², Yin-Shiou LIN³, Mei-Yin CHIEN²,⁴, Wen-Chi HOU⁵,⁶,*, and Miao-Lin HU¹,*

¹Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
²Ko Da Pharmaceutical Co., Ltd, Tao-Yuan, Taiwan
³School of Pharmacy, Taipei Medical University, Taipei, Taiwan
⁴Graduate Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei, Taiwan
⁵Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
⁶Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan

(Received March 12, 2012; Accepted April 20, 2012)

ABSTRACT. Acteoside (Act), a phenylethanoid glycoside, is an active compound in several plants and traditional herbal medicines. Act along with its structural isomer, isoacteoside (Isoact), and an analog, 6-O-acetylacteoside (6-O-acetylact), were used in the study to investigate the antioxidant, anti-angiotensin-converting enzyme (ACE), and hemolysis inhibitory activities in vitro and antihypertensive activity against spontaneously hypertensive rats (SHR) in vivo. We showed that Act, Isoact, and 6-O-acetylact effectively scavenged 1,1-diphenyl-2-picryl-hydrazyl radicals (with IC₅₀ at 11.4, 9.48, and 9.55 μM, respectively) and superoxide radicals (with IC₅₀ at 66.0, 38.5, and 39.1 μM, respectively). As Isoact and 6-O-acetylact had similar radical-scavenging activities, only Act and Isoact were used for following studies. Both Act and Isoact inhibited xanthine oxidase activity with IC₅₀ at 53.3 and 62.2 μM, respectively. Both Act and Isoact also significantly inhibited ACE activity and the hemolysis induced by 2,2’-azo-bis(2-amidinopropane)dihydrochloride, but the effects of Act were stronger than Isoact. We then orally administered a single dose of Act or Isoact (10 mg/Kg body weight) to SHR and measured the changes of systolic blood pressure (SBP) and diastolic blood pressure (DBP) over 24 h. Act, but not Isoact, showed antihypertensive activity in lowering SBP and DBP. The results suggest the potential usefulness of Act as a health food product for antioxidant protection and blood pressure regulation.

Keywords: Acteoside; Antihypertensive activity; Angiotensin converting enzyme (ACE); Antioxidant; Hemolysis.
agents when treating patients with concurrent secondary diseases (Fotherby and Panayiotou, 1999). ACE (peptidyl-dipeptide hydrolyase EC 3.4.15.1) is a dipeptide-liberating Zn-containing exopeptidase, which removes a dipeptide from the C-terminus of angiotensin I to form angiotensin II, a very hypertensive compound. Several antioxidant peptides (reduced glutathione and carnosine-related peptides) exhibit ACE inhibitory activities (Hou et al., 2003). The first clinically available, orally active ACE inhibitor, captopril, was developed for hypertensive treatments (Ondetti et al., 1977; Borer, 2007). Act has been reported to exert nitric oxide-mediated relaxing effects on the endothelium-intact aortic rings of SD rats (Wong et al., 2001). Ahmad et al. (1995) have reported that Act induces a dose-dependent decrease in systolic blood pressure (SBP) and diastolic blood pressure (DBP) following its intravenous injection into normotensive anesthetized Wistar rats. However, it is unclear whether orally administered Act and/or its related isomers are antihypertensive in vivo. In the present study, we investigated the in vitro antioxidant capacity and ACE inhibitory activities as well as the in vivo antihypertensive activity of Act, Isoact and/or 6-O-acetylact using the spontaneous hypertensive rats (SHRs). These studies are expected to provide useful data for the development of Act as a health food product.

MATERIALS AND METHODS

Materials

2,2′-azo-bis(2-amidinopropane)dihydrochloride (AAPH), ACE (I unit, rabbit lung), butylated hydroxytoluene (BHT), DPPH, N-(3-[2-furyl]acryloyl)-Phe-Gly-Gly (FAPGG), NADH, phenazine methosulfate (PMS), xanthine, and xanthine oxidase were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Captopril was purchased from Calbiochem Co. (CA, USA). Act, Isoact, and 6-O-acetylact (Figure 1) were purchased from Equl Corp. (purities > 98%, Shanghai, China). Other chemicals and reagents were from Sigma Chemical Co. (St. Louis, MO, USA).

Scavenging activity of Act, Isoact and 6-O-acetylact against DPPH radicals by spectrophotometry

A volume (0.3 mL) of Act, Isoact, and 6-O-acetylact (final concentrations were 1.56 to 50 µM), BHT and ascorbic acid (final concentrations were 2.4 to 60 µM) was added to 0.1 mL of 1 M Tris-HCl buffer (pH 7.9) and then mixed with 0.6 mL of 100 µM DPPH in methanol to a final concentration of 60 µM for 20 min under light protection at room temperature (Liu et al., 2004; Lin et al., 2008). The decrease of absorbance at 517 nm was measured and expressed as ΔA517 nm. Deionized water was used as a blank experiment. The scavenging activity of DPPH radical (%) was calculated with the equation: (ΔA517 nm/blank − ΔA517 nm/sample) / ΔA517 nm/blank × 100. The IC50 stands for the concentration of half-inhibition.

Inhibitory activity of Act and Isoact against xanthine oxidase

The xanthine oxidase activity was measured by determining uric acid formation at 295 nm using xanthine as substrate (Kalckar, 1947). The different amounts of Act and Isoact (the final concentrations were 25, 50, and 75 µM) were pre-mixed with 50 μL of 1 mU/mL xanthine oxidase at 4°C for 1 h, and then the 300 μL of 1 mM xanthine were added. The changes of absorbance at 295 nm were recorded over 2 min and expressed as ΔA295 nm/min. The xanthine oxidase inhibitory activity (%) was calculated as follows: (ΔA295 nm/minblank − ΔA295 nm/minsample) / ΔA295 nm/minblank × 100. Deionized water was used instead of sample solution as a blank experiment. IC50 stands for the concentration of half-inhibition.

Scavenging activity of Act, Isoact, and 6-O-acetylact against superoxide radicals by spectrophotometry

The superoxide radical was generated by the PMS-NA-DH system (Liu et al., 2004; Lin et al., 2008). All 0.2 mL samples, containing different amounts of Act, Isoact, and 6-O-acetylact (the final concentration was 15.6, 31.3, 62.5, 125, and 250 µM), were added in sequence to 0.2 mL of
Determination of ACE inhibitory activity of Act and Isoact by HPLC

Each 50 µL of Act (0.2, 0.4, 0.5, and 2.0 µmole) and Isoact (0.1, 0.2, 0.5, 1.0, and 2.0 µmole) were premixed with 15 µL of 1U/mL ACE for 5 min, and then 200 µL of 0.5 mM FAPGG were added and reacted at room temperature for 10 min (Anzenbacherova et al., 2001). The 800 µL methanol was added to stop the reaction. The blank experiment was FAPGG only. In the control experiment, ACE reacted with FAPGG under the same conditions. Chromatographic separation of FAPGG and FAP was carried out on the Hitachi (Japan) chromatographic system with a 10 µL-loop. The HPLC analysis was performed on a Biosil Aqu-ODS-W 5 µ column (Biotic Chemical Co., Ltd., Taiwan, 250 × 4.6 mm i.d.), particle size 5 µm. The reacted mixture was separated isocratically with a mobile phase consisting of 0.02 M nonylamine (adjusted to pH 2.4 with phosphoric acid) and acetonitrile in a ratio of 67.5:32.5 (V/V) (Anzenbacherova et al., 2001). The flow rate was 1 mL/min; the injection volume was 10 µL; the detector was set at 345 nm. The ACE inhibitions (%) of Act and Isoact were calculated as follows: \[\frac{(\text{Area of FAPGG}_{\text{blank}} - \text{Area of FAPGG}_{\text{control}})}{(\text{Area of FAPGG}_{\text{blank}} - \text{Area of FAPGG}_{\text{sample}})} \times 100. \] The statistical analysis was performed using SPSS for Windows, version 10 (SPSS, Inc., Chicago, IL, USA).

RESULTS

Scavenging activity of DPPH and superoxide radicals

Act, Isoact, and 6-O-acetylact exhibited dose-dependent DPPH scavenging activities at pH 7.9 (Figure 2). The IC₅₀ values were 11.4, 9.48, and 9.55 µM, respectively, for Act, Isoact, and 6-O-acetylact. The IC₅₀ values of positive controls of ascorbic acid and BHT were 13.1 and 18.5 µM, respectively.

Inhibition of xanthine oxidase activity

Inhibited xanthine oxidase activity of Act and Isoact were showed to exhibit dose-dependent inhibition of xanthine oxidase (Figure 3). The IC₅₀ was calculated to be 53.3 and 62.2 µM, respectively, for Act and Isoact.

Inhibition of superoxide dismutase activity

Because both Act and Isoact inhibited xanthine oxidase activity, we used the PMS-NADH system to generate superoxide radicals (Liu et al., 2004; Lin et al., 2008). Act,

Antihypertensive effects of Act and Isoact on SHR

The effects of orally administered Act, Isoact, and captopril by feeding tube (2.0 × 80 mm) on the reduced SBP and the reduced DBP were determined according to the method of previous reports (Lin et al., 2006; Lin et al., 2008; Han et al., 2011). All animal experimental procedures followed published guidelines (National Science Council, 1994). The male SHRs (8 weeks of age, National Laboratory Animal Center, Taipei) were housed individually in steel cages kept at 24°C with a 12-h light-dark cycle and had free access to a standard mouse/rat chow (Prolab® RMH2500, 5P14 Diet, PMI Nutrition International, Brentwood, MO) and water. SHRs were randomly divided into control and sample treatments for SBP and DBP determinations (six rats per group). For a short-term antihypertensive experiment, 0.5 mL of 10 mg Act or Isoact/Kg of SHR or 5 mg captopril/Kg of SHR were orally administered once, and tail blood pressure was measured at 2, 4, 6 and 24 h after a single oral administration. The 0.5 mL distilled water was used for a blank experiment. An indirect blood pressure meter (BP-98A, Softron Co. Ltd. Tokyo, Japan) was used to measure SBP and DBP four times at each determination for each treatment.

Data analysis

Values are presented as means ± SD and analyzed using one-way ANOVA, followed by the post hoc Tukey’s test for multiple mean comparisons. Student’s t-test was performed, when only two groups of data were compared (such as between Act and Isoact at the same concentration). A p value < 0.05 is considered statistically significant. The statistical analysis was performed using SPSS for Windows, version 10 (SPSS, Inc., Chicago, IL, USA).
Isoact, and 6-O-acetylact exhibited dose-dependent superoxide radical scavenging activities (Figure 4). The IC_{50} values were 66.0, 38.5, and 39.1 µM, respectively, for Act, Isoact, and 6-O-acetylact. The IC_{50} values of the positive control of ascorbic acid were 9.0 µM. From the results of Figures 2 and 4, it were clear that Isoact and 6-O-acetylact had similar radical-scavenging activities against DPPH and superoxide radicals, and thus only Act and Isoact were selected for further biological activity screenings.

Inhibitory activity of Act and Isoact against AAPH-mediated hemolysis

The inhibitory activities of Act and Isoact against AAPH-mediated hemolysis at concentrations of 2, 5 and 10 µM were evaluated over 3.5 h (Miki et al., 1987). The results of Figure 6A demonstrate that the hemolysis in rat RBC dramatically increased (expresses as ΔA536 nm) after 3-h or 3.5-h reactions in the presence of AAPH radicals (as control groups, white cycle symbol). Little or no hemolysis was observed in the absence of AAPH radicals during the 3.5-h reaction (as blank groups, black cycle symbol). Therefore, the hemolysis inhibition of Act and Isoact at 3 h or at 3.5 h was calculated as follows: ($\Delta A536$ nm/min_{control} − $\Delta A536$ nm/min_{sample}) ÷ $\Delta A536$ nm/min_{control} × 100. Figure 6B
shows that both Act and Isoact at 2, 5 and 10 µM exhibited concentration-dependent inhibition on AAPH-induced hemolysis, with the inhibitory effects of Act significantly stronger than those of Isoact at each concentration used.

Antihypertensive effects of Act and Isoact on SHR

SHRs received a single oral administration of Act and Isoact (10 mg/Kg SHR), and changes in SBP and DBP were recorded over 24 h. We previously reported that the blood pressure (SBP and DBP) of SHR was changeable during 24-h (Lin et al., 2006; Han et al., 2011). Therefore, a comparison at a fixed time (such as 2, 4, 6, 8, and 24 h) between blank and sample instead of before and after oral administration itself was used. It was found that Act, but not Isoact, effectively reduced SBP and DBP of SHR compared to the blank (distilled water) group. SBP was significantly reduced in the Act group at 2, 4 and 6 h by 18.8, 16.5 and 14.9 mmHg, respectively, but the reduction of SBP (3.3 mmHg) at 24 h after Act treatment was not sta-
tistically significant (Figure 7A). As shown in Figure 7B, DBP was decreased in the Act group at 2, 4 and 6 h (by 8.5, 7.6 and 12.0 mmHg, respectively), although only the result obtained at 6 h was statistically significant ($P < 0.05$). It was noted that Act and captopril (as positive control) had similar effects on SBP at early stages (2, 4 and 6 h) after oral administration.

DISCUSSION

Active oxygen species and free radical-mediated reactions are involved in degenerative or pathological processes such as aging, cancer, coronary heart disease and Alzheimer’s disease (Ames, 1983; Gey, 1990; Smith et al., 1996). Several reports have focused on screening the antioxidant activities from natural resources. In the present study, we first compared the antioxidant activities of Act, Isoact and 6-O-acetylact. Act and Isoact are structural isomers in which the constituent of caffeic acid moiety is bonded to the C-4 hydroxyl group of glucose in the former and to the C-6 hydroxyl group of glucose in the latter. While the constituents of rhammose and 3’,4’-dihydroxyphenylethanol, respectively, are bonded to the C-3 and C-1 hydroxyl groups of the glucose moiety in the same Act and Isoact molecule, 6-O-acetylact is an Act derivative in which acetic acid is bonded to the C-6 hydroxyl group in the glucose moiety (Figure 1). Koo et al. (2006) reported that Act and its aglycones exhibited DPPH-scavenging activities, and the order of these activities (expressed as IC$_{50}$) were Act (1.28 µM) > caffeic acid (2.22 µM) > 3’,4’-dihydroxyphenylethanol (7.72 µM) > α-tocopherol (15.1 µM). In the present report (Figure 2), the order of DPPH scavenging activities (expressed as IC$_{50}$) is 6-O-acetylact (9.55 µM) ≈ Isoact (9.48 µM) > Act (11.4 µM). These values were comparable to or bet-
was calculated to be 598 µM of Act in the present report might be from the final concentration of 60 µM DPPH in stead of 30 µM used of Koo et al. reported (2006). As DPPH radical assay belongs to the electron-transfer reaction (Huang et al., 2005), it is speculated that the derivative in C-6 hydroxyl group of the glucose moiety, such as acetyl group in 6-O-acetylact and caffeic acid moiety in Isoact, may more easily provide an electron-transfer reaction than those of the C-6 free hydroxyl group in the glucose moiety of Act for the DPPH scavenging assay.

Act, 6-O-acetylact and Isoact have been reported to possess superoxide-scavenging activity in vitro using the xanthine/xanthine oxidase system to generate superoxide radicals (Wang et al., 1996; Gao et al., 1999). However, our present study indicated that Act exhibited xanthine oxidase inhibitory activities (Figure 3). Therefore, the superoxide radical was generated by using PMS-NADH system in the present report (Liu et al., 2004; Lin et al., 2008) instead of xanthine/xanthine oxidase system. Indeed, using the xanthine/xanthine oxidase system to generate superoxide radical, Wang et al. (1996) obtained an IC50 of 63 µM of Act against superoxide radicals, and this value is close to that for inhibition of xanthine oxidase activity by Act, as reported in the present study (53.3 µM). It was reported that caffeic acid exhibited xanthine oxidase inhibitory activities (Chiang et al., 1994). It may be speculated that the superoxide-scavenging activities using xanthine/xanthine oxidase generating system of some phytochemicals with structures associated with caffeic acid, such as Act or Isoact (Wang et al., 1996; Gao et al., 1999), may have been contributed, at least in part, on xanthine oxidase inhibitions. Interestingly, Wang et al. (1996) found that Act (0.5 and 2.5 mM) did not inhibit xanthine oxidase activity which as determined by an oxygen electrode for oxygen consumption during xanthine oxidation. Thus, it is important to bear in mind that different methods for assaying superoxide-scavenging activity may produce contradictory data.

Li et al. (1993) have reported a similar extent of inhibition of Act and Isoact against AAPH-mediated hemolysis in the RBC of mice. However, we showed here that Act exhibited much higher inhibitory activity against AAPH-induced hemolysis in RBC of rats than did Isoact (Figure 6). It is unclear whether such an inconsistency may have been due to the difference in rodent species.

Kang et al. (2003) reported that Act exhibited ACE inhibitory activities, and the IC50 was 373.3 µg/mL which was calculated to be 598 µM using Hip-His-Leu as substrates. In the present report, Act showed higher ACE inhibitory activities than did Isoact, and the IC50 of the former was calculated to be 472 µM by area in the HPLC chromatograms (Figure 5). Act has been reported to exert nitric oxide-mediated relaxing effects on endothelium-intact aortic rings of SD rats (Wong et al., 2001). Although Act has been shown to be antihypertensive in Wistar rats, the study employed intravenous injection of Act into anesthetized rat in order to rule out the adsorption factor (Ahmad et al., 1995). Herein, we administrated Act orally to SHR and determined changes in blood pressure. We found that the oral administration of Act, but not of Isoact, exhibited antihypertensive effects by lowering SBP and DBP over 24 h after a single administration (Figure 7). Act at a dose of 10 mg/kg body weight had an effect close to that of captopril in the dose of 5 mg/kg SHR in lowering SBP and was better than captopril at lowering DBP.

In conclusion, Act exhibited antioxidant activities, ACE inhibitory activities, and antihypertensive effects on SHR. The results presented here will benefit the effort to develop herbal medicines or related products using Act, which has been found in many plants and herbal medicines, for antioxidant protection and therapeutic effects in the future.

LITERATURE CITED

洋丁香苷及其結構類似物之抗氧化與抗高血壓活性評估

陳兆祥12 林音秀3 簡美英24 侯文琪56 胡淼琳1

1 中興大學 食品暨應用生物科技學系
2 科達製藥股份有限公司
3 臺北醫學大學 藥學系
4 臺北醫學大學 生醫材料暨組織工程研究所
5 臺北醫學大學附設醫院 中草藥研究中心
6 臺北醫學大學 生藥學研究所

洋丁香苷 (Acteoside, Act), 是許多植物或中草藥中的活性成分。本試驗利用洋丁香苷及兩種結構類似物，異洋丁香苷 (isoacteoside, Isoact) 與 6-乙酸基洋丁香苷 (6-O-acetylacteoside, 6-O-acetylact), 進行抗氧化、抗血管收縮素轉化酶、抗溶血體外試驗及以自發性高血壓鼠進行抗高血壓之動物試驗。結果顯示，三種試驗樣品皆能有效清除 DPPH 自由基與超氧自由基。因為異洋丁香苷與 6-乙醯洋丁香苷有類似清除自由基活性，因此後面試驗只以洋丁香苷與異洋丁香苷進行比較。兩者皆具有抑制黃嘌呤氧化酶與血管收縮素轉化酶活性；在抑制 2,2’-azo-bis(2-amidinopropane)dihydrochloride 誘發溶血試驗上，洋丁香苷效果優於異洋丁香苷。以自發性高血壓鼠進行抗高血壓之動物試驗，洋丁香苷與異洋丁香苷分別以 10 mg/Kg 劑量單一餵食一次觀察 24 小時血壓變化。結果顯示，在此劑量上只有洋丁香苷具有明顯調降高血壓鼠收縮壓與舒張壓活性。這些結果顯示，含有洋丁香苷的中草藥可能可以做為抗氧化與血壓調節之保健食品。

關鍵詞：洋丁香苷；抗高血壓活性；血管收縮素轉化酶 (ACE)；抗氧化；溶血。