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In the énalysis of quantitative inheritance as developed by Mather (1949),
the partition of genetic components is effected by the conventional least square
method using the statistics Vi, Vi, and V3, etc. The estimates of the
environmental components for Vi, and VFS and for Vy, are given respectively
by E; and E, computed from data taken from the parents and/or F, As
Mather’s method may not be very satisfactory in controlling soil heterogeneity
when the block effects are very big, we shall try to undertake another approach
in which we allow for more effective statistical control of the above mentioned
soil heterogeneity.

Proposed experimental design

The design introduced in this paper somewhat takes on the form of a
PBIB combined with a randomized block design. Specifically, it is a group-
divisible PBIB with two associates for F; and F; and a randomized complete
block design for the parents and/or F;. In other words, it is an APBIB
(Augmented PBIB) with the parents and/or F; being assigned as augmented
lines. For illustration, let us assume that we have ba F; lines (each F, line
consisting of 7 individuals) and ba,r F, individuals. We may then arrange
our F; and F; in a group-divisible PBIB W'ith two associates so that any two
individuals in the same block (considered as a group) appear together in one
and only one block, while any two individuals in different blocks do not appear
together in any block. Let there be p augmented lines (Parents and/or F,).
Then in each block of our design, there are a+a;+p plots, namely a plots
for F; line (each line occupies one plot), a; plots for F; individuals and p plots
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for the augmented lines, with each plot containing » individuals. Tt is easily" '
seen that this design is connected and that the difference of any two treatments
is an estimable function. Based on this design, we shall carry on our analysis
in the following sections.

The mathematical model

Let Ni¢,=a:7 and Neg=ar denote, respectively, the numbers of F; and F;
individuals in each block. In accordance with Mather (1949)’s assumptions,
we may then start our analysis with the following model (fixed model):

yij=ptbi+fi+eiw i=1, 2,b; j=1, 2,-bN¢,
Yijr=otbitdirteisre i=1, 2,b;  jr=1, 2,--bNr, (3.1)
Yiirp = ptbitagnteipe =1, 2,005 jr=1, 2,0p; k=1, 2,1

with the restriction
bNFz bNFa p
S+ Sodi e 2 oai"=0 - (3.2)
i=1 ir=1 =1 ,

with 9:j¢ denotes the observation of the jth individual of F, in the ith
block, ¥;;' the observation of the jith individual of F; in the ith block, and
Yiitre the observation of the kth individual of j”th augmented line in the
ith block, fj d;', and a;" (all being unknov;rn constants) denote, respectively,
the genetic values of the jth F; individual, the j’th F, individual, and the j”th
atigmented line. # is the unknown population mean and b; {unknown constants),
the effect of the ith block. e;j, €ij’, and e;;1e are the errors associated
with Y, Yighey and Y1 e, respectively.. It is assumed that e;;w, €ij@
and e;jrre are identically and independently distributed with zero means and
the common variance o¢%
Now let

8:;=1 if f; appears in the ith block

=0 otherwise ;
7:;' =1 if d;' appears in the ith block
=0 otherwise
i=1,2,:b;  j=1, 2,bNs,;  j'=1, 2,--bNr,.

The matrices, A=(8;;), Bxbug, and =i xbNg then specify the arrange-
ments of F, and F; in the blocks. We may therefore call them the first, and
the second incidence matrix. The following relationships can. be shown to
hold: '

AleF2=NFZ 1s, 1'bA=1’bNF;’
leNFS=NF3 1s, 1'b7=1’bupa




July, 1965 Tan and Yuan—Analysis of Quantitative Inheritance 191

where 1, is an #X1 column vector consisting of » 1's. and 1. the transpese
of 1.

Analysis in the sampling theory framework

In the éampling theory framework, we now try to obtain the linear ﬁnbiased
. and fuininum-varianced estimators (or LUMV estimators, for short) of 'fj, d i
-and ;" with the restriction given by (3.2). We will use the following
definitions:

4

Hy= 2 Sy for 1«£j<bNe,
~
, .

Sjr= 21 Tiiii for 1£j'<bN,,
-

b r
Tin= 3 2 v  for  1ZLjnzp
P

bNF I:NF » , -
Bi= 3 0uviwt I Tumiwt S 5w for 1£izh
=1 iT=1 TSN v :
b
G= % B
, . .
Quj=Hj;-— ;1 ~N———6,-1B,- 14j<bNy,

.
Qsjr=Sj1— 2 %M'Br 1< <bNy,

L
Qrjn=Tji— iZ:l —N—B;

N=NF2+NF3+VP

By Gauss-Markov theorem, it can be easily shown that the LUMV estimator 7

of | 4] satisfies
a
Qn
Ci=|9s (4.1)
Q:

where Jong x1 dz,NF «1 and asxy are the column vectors for fj, d;r and. a;n,
REF Aoy a

respectively; QR"“: i Qs”s <1 and QT sy AT the respective column vectors for
&3 3 :
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Qx ;1 Qs;s, and Q: ;. Cis a (bNg,+bNz,+p) X (bNg,+bNys,+p) matrix obtained
from
Qn
E|Qs|=Ct
A\

To obtain C let us now index the subscripts of the observations systematically
so that the first set appears in the first block and the second set in thé second

Qx
block, and so on. Then, taking expectation of Qs , we obtain
" e
H A B
c=|A"G C
B C M

2

Where
H= (L, o+ (— )1y Vs, #10
6= (L (=3 )y 1y ) 210
M=br (1,— % 1,1%)
A=(=E )10, 1, #Ts
B= ()1, Vo1

C= (=2 )1, sl

denotes “the Kronecker product” (see Marcus 1960)
It is easy to see that

Rank C=b (Ng,+Np,)+p—1 o
By imposing the restriction (3.2), we now solve (4.1) to ‘obtain t. Subtracting
from each of last p rows of C, the row vector,( —V%)l 217 st%l’ 5, 17 NF3%1' 5, 175)
(4.1) then becomes ‘

QH
C*i=|Qs
e
where
H A B
cr=|A'G C
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Now '
| (L +—5 1, RLSHPED AR S L %L, L1 1,%1
Ng p by ,rp NF2 NFS by brp Np + 8 b
L ; M,1~ )
(c*) 1= p 1NF31 NFzeeI,,, (Dg,F 5Ly Uy )% 1o, bp “brp Ly Ua¥1s
1
0 v o ; ; rp I
So-
Qu.
7= (C*)-1|Qs
Z _ Qr
or
quz(i-1)+i¥QHNF2(i—1)+3+ 70 jZ‘. me (. 1)+,’+ 2 quF G-+
+ brp jZ Qr;”, lzizd, \lé]'éNn,*
F
. dnp - i —1)+:+qu (;—1)+_{'+ 2 qu (:-1)+]'
3
1' ’ > 3
+Wj12=1QTj"’ \lrétéb, léj éNFa
n=—L_q lejitz
a" - br lel, -_] —'p

The variance and covariance matrix of tis given by

where R ,
- 1 : N+7p k
Var= (g + 5Ly, 1y ) T+ (= —Fg,20) Ly, Uy %15 1
Var= (b, 5y, iy ) 10+ (= NA2) L, s, 514 1

vsa-—r—;( —2r1s 1)

N+#p -
1NF2 1,N1"3*16+(-— Nbrp ) 1NF21INF3*1b 1

V12 =
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Va=Viy= ("‘Nl—b") 1NF31’1>%1 b

Reexamination of Mather’s Statistics

On replacing every individual of the F; F; and their parents and/or Fy,
respectively, by their estimates, we obtain a set of observations clear of
soil effects. We now obtain the corresponding second order statistics and their
expectations as those given in Mather, based on this set of observations.

Assuming that the errors e;; are normally distributed, we have, from (4.2)

Loy, Uy ) #Tot (= RE22Y 1, 114, %15 151)

FNf, (T, + Nbrp

and

1
rp

N, ATy Ty, 1y ) ¥t (— o) Ly, Uy, #1 D).

Define now

VFZ(C)" bN L —1 2 (f:“‘f) bNyz f (INFz’a‘:‘Ib—'b—I{lI— l,Nle,NFz*lb 1’6)
T2

i=1

: 1 ab _ 1 - 1 % A
Fo(0)= Tpy :=1[r—1 ( j_d )2]_'1761(7'—1‘) C_i'{[(:[r 7 1,1,)% L] Ib}‘-i
PSS SN R PSS N 3 e TIPS LS |

V7o ba—1 = ‘4G (ba—1)¥? = 7 r/TRaln

i (1, 1,51, 1,) %15 Y3}

where d;; is the jth d in the ith line.

ba

.

Q,n

o=t % .
di-" 7 jgld”’ ba

=1

'

Then the expected value of {/'sz) is given by

E(Vsyo) = D+ H+[1+ rp(bNF - (6-1) ] o (5.1)
Similary, the corresponding Vps(c) and V5> will have expectations respectively
given by ‘

E(Viy o) =—5D+s H+(P“b;;>%},:f§’;”1) - ' (5.2)

and

E(Vsyo)=—g Dt—g-Hiot ~ (53)

From the analysis of variance table, we have the minimum variance
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unbiased estimator 6% of ¢% as given by

__SSE

é? 54
7. (54)
Analysis of variance table
Sources of variation | Degrees of freedom | Sum of squares | Mean square E?ﬁﬁ?d
Dule to a}d]i;lsted df1=b(NlFZ+NF3) S8, =Xf7Qu;
values o , F +p— d;iQsj §
and parents? and / +2d; Qs &
or Fy +EaquT]”
: | T
Blocks dfe=b—1 S§S;=N _ZJ(B,- —B)*
=1
s dfe =b(N—N Qe _aa SSe
Residual '—Na) +p_ff SSE -—-SST 881 SSZ DfE P2
Total IN—1 SST

Using (5.1), (5.2), (5.3) and (5.4), we can obtain -the estimates of D and
H by applying the usual least square method, as given in Mather.

SUMMARY

1. In this paper another approach is undertaken to control the enviromental
effects in the studies of the quantitative inheritance. Our approach differs
from that of Mather in that, instead of computing E; and E, we first
obtain the LUMV estimators of the genetic values of the F; and F; indivi-
duals by the conventional least square method; the corresponding statistics
Ve, Vi, and Vi, etc, as those given in Mather, are then obtained to effect
the partition of the genetic variances, based on. this set of LUMV. ésti-
mators. , ‘

2. In section (2) a design which is called APBIB in this paper is proposed
for the studies ofthe quantitative inheritance. Specifically this design is
a group-divisible PBIB with two associates for the F; and F; individuals
combined with a randomized complete block design for the parents and/or
F, individuals {called augmented lines). In essence this design is equivalent
to that given in Mather, even though neither the nature nor the properties
of this design have been revealed in Mather’s book.

KEFRZ B kTG SR

>

¥ 4 A x K B
1. 7MER Mather FZBIHEA B4 B IR 2 SRS R S BRI R AR
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FUF MR o ARICRRES—FHUMTEERE TR o E5EkH Mather 5k
RRZBERFRTIHIE E1 8 By WEEHRDTRELRE Fo & F; @E2HRER
RS LB (HE o KORHSMHERR Fo X Fs (R BEEEHE Ve, Vig &
Ve, & DIEFTEE R ZES

2 RN E @%ﬁ%ﬁ%ﬁ#~§t§’*&“¥ P ERRBEERE T BEHAEARE
LR~ 5#z %k PBIB (I F; X F, [EEETS )%“méé%ﬁ%(%ﬂiﬁ F, &)
RETZHLA » BB R APBIB o &30 S HTEIDUHLERGT R o
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