A FURTHER NOTE ON THE ESTIMATION OF EFFECTIVE NUMBER OF FACTORS BY MEANS OF PROBABILITY-GENERATING FUNCTIONS⁽¹⁾

TENG-SHAN WENG(2)

(Received Feb. 21, 1967)

In a previous note (Weng, 1966) we arrived at two formulas for estimating effective number of factors or gene-pairs under two given genetic models designated as Model I and Model II, respectively. We now propose another genetic model, namely Model III, thereby to derive a new formula for the same purpose.

As before, we consider a quantitative character or trait of polygenic nature in a certain diploid organism and also consider a crossing between two pure lines L_1 and L_2 of this organism. Suppose that there are n independent contributing factors involved in this cross so that we can designate the genotypes of L_1 and L_2 respectively by $a_1 a_1 a_2 a_2 \ldots a_n a_n$ and $A_1 A_1 A_2 A_2 \ldots A_n A_n$, where the genotype of L_1 is assumed to have a smaller genotypic value as compared with that of L_2 . Suppose further that there is no interaction between the contributing factors. We then proceed to estimate the effective number n of factors under the framework of the following model:

Model III: Let the genotypes of L_1 and L_2 be redesignated as $b_1 b_1 b_2 b_2 \ldots b_\kappa b_\kappa c_1 c_1 c_2 c_2 \ldots c_m c_m$ and $B_1 B_1 B_2 B_2 \ldots B_\kappa B_\kappa C_1 C_1 C_2 C_2 \ldots C_m C_m$ ($\kappa+m=n$, $0 \le \kappa \le n$, $0 \le m \le n$), respectively, where we assume that each of the B genes is lacking in dominance relative to its allele b so that the B genes have each an additive and equal effect e, and that each of the C genes is dominant over its allele c so that the gene-pairs of the form CC or Cc have each an additive and equal dominance effect d=2e. Hence if we denote the difference of the genotypic values of L_1 and L_2 as D, we have

 $D=2\kappa e+md=2(\kappa+m)e=2ne$.

We thus see that

$$e = D/(2n) \tag{1}$$

⁽¹⁾ Paper No. 61 of the Scientific Journal Series, Institute of Botany, Academia Sinica.

⁽²⁾ Associate Research Fellow, Institute of Botany, Academia Sinica

and

$$d = D/n. (2)$$

Now our problem is to estimate n and κ , subject to the restriction $n-\kappa=m$. To this effect, let K and M be the random variables representing respectively the number of B genes and the number of gene-pairs of the form CC or Cc in each individual of the F_2 population of the cross $L_1 \times L_2$. Then the probability-generating functions of these random variables are given respectively by

$$P_{\kappa}(t) = \sum_{i=0}^{2\kappa} {2\kappa \choose i} \left(\frac{1}{2}\right)^{2\kappa} t^{i} = \left[\frac{1}{2}(t+1)\right]^{2\kappa} \tag{3}$$

and

$$P_{M}(t) = \sum_{j=0}^{m} {m \choose j} \left(\frac{3}{4}\right)^{j} \left(\frac{1}{4}\right)^{m-j} t^{j} = \left[\frac{1}{4}(3t+1)\right]^{m}, \tag{4}$$

where t is a dummy variable such that -h < t < h for some real number h > 0. We now consider the random variable N = K + M, which represents the total number of B genes and gene-pairs of the form CC or Cc in F_2 . Since K and M are stochastically independent, it follows that N has the probability-generating function

$$P_{N}(t) = P_{K}(t) \cdot P_{M}(t) = \left[\frac{1}{2}(t+1)\right]^{2\kappa} \left[\frac{1}{4}(3t+1)\right]^{m}. \tag{5}$$

By virtue of (3), (4) and (5) we find the expectations and the first factorial mome \(\frac{1}{2} \)s of K, M and N to be

$$\begin{split} E(\mathbf{K}) &= \frac{d}{dt} \mathbf{P}_{\mathbf{K}}(t) \,|_{t=1} = \kappa, \\ E[\mathbf{K}(\mathbf{K}-1] &= \frac{d^2}{dt^2} \mathbf{P}_{\mathbf{K}}(t) \,|_{t=1} = \frac{1}{2} \kappa (2\kappa - 1), \\ E(\mathbf{M}) &= \frac{d}{dt} \mathbf{P}_{\mathbf{M}}(t) \,|_{t=1} = \frac{3}{4} m, \\ E[\mathbf{M}(\mathbf{M}-1)] &= \frac{d^2}{dt^2} \mathbf{P}_{\mathbf{M}}(t) \,|_{t=1} = \frac{9}{16} m (m-1), \\ E(\mathbf{N}) &= \frac{d}{dt} \mathbf{P}_{\mathbf{N}}(t) \,|_{t=1} = k + \frac{3}{4} m, \\ E[\mathbf{N}(\mathbf{N}-1)] &= \frac{d^2}{dt^2} \mathbf{P}_{\mathbf{N}}(t) \,|_{t=1} = \frac{1}{2} \kappa (2\kappa - 1) + \frac{3}{2} \kappa m + \frac{9}{16} m (m-1). \end{split}$$

It follows immediately that

$$var(K) = E[K(K-1)] + E(K) - E^{2}(K) = \frac{1}{2}\kappa.$$
 (6)

Similary,

$$\operatorname{var}(\mathbf{M}) = \frac{3}{16}m,\tag{7}$$

and

$$var(N) = \frac{1}{2}\kappa + \frac{3}{16}m$$

$$= var(K) + var(M).$$
(8)

The above result shows that var(N) can be partitioned into two components, namely var(K) and var(M). Accordingly, the genetic variance of F_2 , to be denoted as $V_{\mathcal{S}_{F_2}}(N)$, can also be partitioned into two components, to be denoted respectively as $V_{\mathcal{S}_{F_2}}(K)$ and as $V_{\mathcal{S}_{F_2}}(M)$, which are the counterparts of var(K) and var(M), respectively Let us express this relation as follows:

$$V_{g_{F_2}}(N) = V_{g_{F_2}}(K) + V_{g_{F_2}}(M).$$
 (9)

Now, referring to (1) and (2), we can calculate $V_{g_{F_2}}(K)$ and $V_{g_{F_2}}(M)$ as follows:

$$V_{g_{F_2}}(K) = var(eK) = var(\frac{D}{2n}K) = \frac{D^2}{4n^2}var(K) = \frac{\kappa D^2}{8n^2},$$
 (10)

$$V_{g_{F_2}}(M) = var(dM) = var(\frac{D}{n}M) = \frac{3mD^2}{16n^2} = \frac{3(n-\kappa)D^2}{16n^2}.$$
 (11)

We note here that $m=n-\kappa$. Substituting (10) and (11) into (9), we obtain

$$V_{g_{F_2}}(N) = \frac{(3n-\kappa)D^2}{16n^2}.$$
 (12)

Consider now a backcrossing of the type $F_1 \times L_1$, *i.e.*, $B_1 b_1 B_2 b_2 \dots B_K b_K C_1 c_1 C_2 c_2 \dots C_m c_m \times b_1 b_1 b_2 b_2 \dots b_K b_K c_1 c_1 c_2 c_2 \dots c_m c_m$. Let K' and M' be random variables respresenting respectively the number of B genes and the number of gene-pairs of the form Cc in each individual of the backcross $F_1 \times L_1$. Then the probability-generating functions of K' and M' can be obtained as follows:

$$P_{\kappa'}(t) = \sum_{i=0}^{\kappa} {\binom{\kappa}{i}} (\frac{1}{2})^{\kappa} t^{i} = [\frac{1}{2}(t+1)]^{\kappa},$$

$$P_{M'}(t) = \sum_{j=0}^{m} {m \choose j} (\frac{1}{2})^m t^j = [\frac{1}{2}(t+1)]^m$$
.

Here the random variables K' and M' are stochastically independent, hence the probability-generating function of the random variable N'=K'+M' is given by

$$P_{N'}(t) = [\frac{1}{2}(t+1)]^{\kappa+m}.$$

Making use of these probability-generating functions and following a procedure similar to what we have undergone so far, we find that the genetic variance of $F_1 \times L_1$, denoted by $V_{g_{B_1}}(N')$, as follows:

$$V_{g_{B_1}}(N') = \frac{(4n - 3\kappa)D^2}{16n^2}.$$
 (13)

Solving Equations (12) and (13) simultaneously for n and κ we obtain

$$n = \frac{5D^2}{16[3V_{g_{R_2}}(N) - V_{g_{B_1}}(N')]},$$
(14)

$$\kappa = \frac{5[4V_{g_{F_2}}(N) - 3V_{g_{B_1}}(N')]D^2}{16[3V_{g_{F_2}}(N) - V_{g_{B_1}}(N')]^2}.$$
(15)

In practice the parameter D may be estimated by the difference between the respective sample means of L_1 and L_2 . Thus, denoting by \hat{D} , \bar{L}_1 and \bar{L}_2 the sample estimate of D and the sample means of L_1 and L_2 , respectively, we have

$$\hat{\mathbf{D}} = \hat{\mathbf{L}}_2 - \hat{\mathbf{L}}_1. \tag{16}$$

Further, we can, under the assumption of no interaction between the genotypes and the environmental effects and of no epistasis between the gene-pairs of the genotypes, decompose the phenotypic variances of F_2 and $F_1 \times L_1$, denoted respectively by V_{F_2} and V_{B_1} , as follows:

$$V_{F_2} = V_{g_{F_2}} + V_e$$
,
 $V_{B_1} = V_{g_{B_1}} + V_e$,

where V_e denotes the environmental variance. Let V_{F_1} denote the phenotypic variance of the F_1 population (i. e., $L_1 \times L_2$). Then we should have $V_{F_1} = V_e$, because all the F_1 individuals have the same genotype. Therefore, we can estimate $V_{g_{F_2}}$ and $V_{g_{B_1}}$ respectively by

$$\hat{\mathbf{V}}_{g_{\mathbf{F}_2}} = \hat{\mathbf{V}}_{\mathbf{F}_2} - \hat{\mathbf{V}}_{\mathbf{F}_1} \tag{17}$$

and

$$\hat{\mathbf{V}}_{g_{\mathbf{B}_1}} = \hat{\mathbf{V}}_{\mathbf{B}_1} - \hat{\mathbf{V}}_{\mathbf{F}_1},\tag{18}$$

where $\hat{V}_{g_{F_2}}$, $\hat{V}_{g_{B_1}}$, \hat{V}_{F_2} , \hat{V}_{B_1} and \hat{V}_{F_1} are the sample estimates of $V_{g_{F_2}}(N)$, $V_{g_{B_1}}(N')$, V_{F_2} , V_{B_1} and V_{F_1} , respectively. Denoting by \hat{n} and $\hat{\kappa}$ the sample estimates of n and κ , respectively, and referring to Equations (14), (15), (16), (17) and (18), we obtain, finally,

$$\hat{n} = \frac{5\hat{\mathbf{D}}^{2}}{16(3\hat{\mathbf{V}}_{g_{F_{2}}} - \hat{\mathbf{V}}_{g_{B_{1}}})}$$

$$= \frac{5(\bar{\mathbf{L}}_{2} - \bar{\mathbf{L}}_{1})^{2}}{16(3\hat{\mathbf{V}}_{F_{2}} - \hat{\mathbf{V}}_{B_{1}} - 2\hat{\mathbf{V}}_{F_{1}})},$$

$$\hat{\kappa} = \frac{5(4\hat{\mathbf{V}}_{g_{F_{2}}} - 3\hat{\mathbf{V}}_{g_{B_{1}}})\hat{\mathbf{D}}^{2}}{16(3\hat{\mathbf{V}}_{g_{F_{2}}} - \hat{\mathbf{V}}_{g_{B_{1}}})^{2}}$$
(19)

$$=\frac{5(4\hat{\mathbf{V}}_{\mathbf{F}_{2}}-3\hat{\mathbf{V}}_{\mathbf{B}_{1}}-3\hat{\mathbf{V}}_{\mathbf{F}_{1}})\langle\bar{\mathbf{L}}_{2}-\bar{\mathbf{L}}_{1}\rangle^{2}}{16(3\hat{\mathbf{V}}_{\mathbf{F}_{2}}-\hat{\mathbf{V}}_{\mathbf{B}_{1}}-2\hat{\mathbf{V}}_{\mathbf{F}_{1}})^{2}}$$
(20)

Incidentally, letting \hat{m} denote the sample estimate of m, we get

$$\hat{m} = \hat{n} - \hat{\kappa}. \tag{21}$$

These are the results we wanted.

介紹利用機率母函數以估算有效因子 總數的另一個方法

翁 登 山

$$e=\frac{\mathrm{D}}{2n}, \qquad d=\frac{\mathrm{D}}{n}.$$

如是可利用機率母函數及 L_1 , L_2 雜交後代之統計資料求算 n, k, m 估計值如下:

$$\begin{split} \hat{n} &= \frac{5(\bar{\mathbf{L}}_2 - \bar{\mathbf{L}}_1)^2}{16(3\hat{\mathbf{V}}_{\mathbf{F}_2} - \hat{\mathbf{V}}_{\mathbf{B}_1} - 2\hat{\mathbf{V}}_{\mathbf{F}_1})},\\ \hat{k} &= \frac{5(4\hat{\mathbf{V}}_{\mathbf{F}_2} - 3\hat{\mathbf{V}}_{\mathbf{B}_1} - 3\hat{\mathbf{V}}_{\mathbf{F}_1})(\bar{\mathbf{L}}_2 - \bar{\mathbf{L}}_1)^2}{16(3\hat{\mathbf{V}}_{\mathbf{F}_2} - \hat{\mathbf{V}}_{\mathbf{B}_1} - 2\hat{\mathbf{V}}_{\mathbf{F}_1})^2},\\ \hat{m} &= \hat{n} - \hat{k}. \end{split}$$

 $\bar{L}_1=L_1$ 之樣本平均; $\bar{L}_2=L_2$ 之樣本平均; $\hat{V}_{F_1}=L_1\times L_2$ 的 F_1 之外表型樣本變方 $\hat{V}_{B_1}=F_1\times L_1$ [卽 $(L_1\times L_2)\times L_1$] 之外表型樣本變方, $\hat{V}_{F_2}=L_1\times L_2$ 的 F_2 之外表型樣本變方。

Literature Cited

WENG, TENG SHAN. A note on the estimation of effective number of factors by means of probability-generating functions. Botanical Bulletin of Academia Sinica, 7: 101-104, 1966.