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Abstract’

This article discusses the problem of reducing the general multivariate
linear hypothesis to a canonical form and proves the ‘existence of an ad Joc
orthogonal transformation for the more general case where the design matrix

- of the underlying linear model need not be of full rank.

Let Y be an NXp random matrix such that the row vectors thereof are
stochastically independent,each following a p-variate normal distribution with
common dispersion matrix @(pXp) which is positive-definite. Suppose further
that Y has the expectation

EY = A8,

where A is an NXk known design matrix of rank », 0<r<k<N, and 0 is a
kxp matrix of unknown parameters. To avoid triviality, we shall impose the
condition that =2 and r+p<N. ' S

The general multivariate linear hypothesis is defined in terms of two linear
subspaces 2 and o of an N-dimensional vector space having the respective
dimensions 7 and r—q (0<r—g<r) with ©C8. In general, the column vectors
of &Y are all assumed to lie in 2 a priori and the hypothesis in question
specifies that they all lie in w. In practice, the above problem is customarily
represented by the hypothesis

#:B,06=0,

where B; is a gXk known matrix (usually called a hypothesis matrix) of rank
g such ‘that the row . vectors thereof all lie'in the row space of the matrix
ArA, A being the transpose of A. This latter condition implies  that there
exists a gxk matrix Ay such that B;=A,A’A and is imposed thereupon to
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guarantee the estimability of the set of linear parametric functions represented
by the matrix B;6. Under the general assumption that column vectors of Y

all lie in 2, the normal equation derivable by the method of least squares is
A'A0=A'Y. Let

6= (ATA)-A'Y

be any solution to the normal equation, where (A’A)~ denotes a generalized
inverse of A’A (cf. Rao, 1966). Then, B, is invariant to 6 and is the best
linear unbiased estimator of B,9, and the usual tests (see the next paragraph)
of the linear hypothesis #:B.8=0 are based on two matrix functions of Y,
namely, ‘

H= (B,6)" {B, (A'A)-B}-1B, 6
and E=YY—-06'AY,

where {B,;(A’A)-B}~! denotes the ordinary inverse of B;(A’A)"B,. The
matrices H and E are called hypothesis sum of products (S.P.) matrix and
error S.P. matrix, respectively.

About a dozen of test statistics have been proposed for testing the hypo-
thesis #:B,6=0., Among them, Wilks’ U (Wilks, 1932 and Hsu, 1940}, Lawley’s
V (Lawley, 1938) or Hotelling’s 72 (Hotelling, 1947 and 1951), and Roy’s 4
(Roy, 1954) are most often used in practical applications. Based on these test
statistics, the respective level a rejection regions (0<a<1) for the hypothesis
#:B,80=0 are given by

11 E
Wilks U:U=TTIL4:LET<”’ (1)

* 2
Lawley’s V or Hotelling’s T3: V = tr (HE™) = 2— >v, (2)

and Roy’s A : 2 = Chuax (HEY) > 2, (3)

where “| |” denotes the determinant, “ty” the trace, and “Chmex’” the maximum
characteristic root of a matrix. The constants #, v and A, are determined by

the equations
eiULulpy=0{V>0|R}=0 2> #%} =a.

Let T be an orthogonal transformation such that, after having applied T
to the matrix ¥, the row vectors of the transformed matrix
TY =Y*, say, (4)
are again stochastically independent and distributed according to a p—-variate

normal probability density function with common dispersion matrix @. If the
transformation T can operate on Y in such a way that
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EY¥=M;, i=1,2; EYF =0,
where Y¥ (i=1,2,3) are submatrices of Y defined by the partition
Y¥qaxp
Y* = [Yé‘i\ (r—q)Xp
Y¥d (N—r)xp
and M; (i=1,2) are linearly dependent on the row vectors of @, then the
problem of testing the hypothesis #:B,8=0 is equivalent to testing the
hypothesis
%0 : M]_ = O N

and we say that the original hybothesis is reduced to a canonical form. In fact,
through the execution of such an orthogonal transformation, the original test
can be resolved into a test that is concerned only with some mean vector of
a multivariate normal distribution, which is obviously much simpler to work
with. The existence of an orthogonal transformation as such has been proved
for the case where the design matrix A4 is of full rank, 7. e;, rank A=k (cf.
Hsu, 1941). The purpose of this article is to supply another proof for the
more general case as described in the beginning by constructing an ad hoc
orthogonal matrix. This will be done with the help of a couple of useful
lemmas, as follows:

Lemma 1. If the matrices A(NXk) and B,(¢gXFk) are, respectively, of rank
7 and g (0<qg<r<k<N) and B;=4,A’A for some matrix 4,(¢gXk), then there
exists a matrix A4,{(r—gq) Xk} such that '

A AT A A, =0 (5)
/11 )
and mnk[ ]A’A=r. (6)
Ay

Proor. Let
N (ATA) ={y: A" Ay = 0}
and N (4 AT A) = {y: 4, A’ Ay = 0}.

Here #(A'A) and N (4,A’A) represent the null spaces of A’A and A,A’A,
respectively. It is obvious that

N (ATAY T N (4, ATA) . , (7)
Since, by hypothesis,
rank A, A’A =q (8)

and : rank A'A=rank A=vr,
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it follows that (c¢f. Birkhoff and‘ MacLane, 1965, p. 213)
dim N (A'A) =k —vrank A’/A=k—r=mn, say,
dim /.//(AIA'A)=k—mnk AL ATA =k — g =m, say,
and [¢f. (7)]
0O<m—n=vr-—gq.

Let 8=4{by,...,b,} be a basis of ¥ (4;4’A). Then, without loss of generality,
we may let 8;=1{by,...,0,}C8 be a basis of ¥/ (A’A) and denote by B;={b,+,
...,y the remaining basis vectors in 8. Since B.C N (4,A’A), we must
have '

AL ATAD; =0, i=n-t+1, ..., m. (9)
Let Ay{kx(r—qg)} be a matrix consisting of the »r—¢g basis vectors in 8, It
then follows from (9) that
A, ATA A, =0,

which proves (5).

To prove (6), let us first observe that all the ¢ row vectors of the matrix
A, A’ A are linearly independent [obvious from (8)]. We next show that all
the r—q row vectors of the matrix 4,A’A are also linearly independent. So
let

Brir ATA by + ...+ B A’A b, = 0.
Then,
A,A (Bn+1bn+1+ cieFBubn) =0

and it follows that the vector zo=8,+bps1+...4+Bxbns is a solution to the
linear equation A’Ax=0 and hence x,€ #'(A’A). But this is impossible unless
2,=0, Therefore, we must have

Bn+1= R =Bm=0.

Now it is obvious that A’Ab,+y, ..., A'Ab,, the r—q column vectors of the
matrix A’Ad4;, are linearly independent and so are the r—g row vectors of
the matrix 4,4’A.

We now show that all the » row vectors of the matrix [ﬁ:]A’A are
linearly independent. Suppose that

biALATA | by 4, ATA =0/, (10)

where the vectors b; ({=1,2) are arbitrary. It follows from (5) and (10) that
the sum of squares of components in the row vector b;4,A’ is zero. In fact,
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by Ay ATA Ay by = b A ATA A by + b5 Ay ATA Ay by
= (b Ay ATA 4+ b4, ATA) A3 b
=0.
Hence we must have 0;4,A7=0' and it follows that
by A, ATA =0, (11)
Similarly, we can show that
by A, ATA = 0", (12)

Since the ¢ row vectors of 4,A’A are linearly independent and so are the
r—q ones of A,A’A, the relations (11) and (12} imply that

by =0 and by, =0,
We thus see that the » row vectors of the matrix [j‘]A’A are all linearly
2
independent. Hence (6) follows. Q.E.D.
CoroLLARY. If we write By=A4,A'4 in Lemma 1, then the matrices
B;(A'A)"B] (i=1,2) are positive-definite.
Proor. We observe that
B, (A'A)-B, = 4, A’A 4]
and rank B; = q.
By the rule for the rank of a product matrix,
rank B, < rank A, A' < min (q, N) =g
and rank Ay A' = rank A, A'AA;
it follows that
rank B, (A’A)"B; = rank 4, A' = ¢q.
We thus see that B,(A’A)-B; has full row rank and is necessarily positive-
definite (¢f. Searle, 1971, p. 36).
Using Lemma 1 and following the similar procedure, we can also show

that B;(A’A)~B; is positive-definite. Q.E.D.
For the formulation of the next lemma, we need the following definitions:

DerinirioNn 1. An sX¢ matrix S is said to be semiorthogonal if and only
if s<t and §S'=1I,, where I, denotes the identity matrix of order s.

DerINITION 2. Let S(sxt), s<t, be a semiorthogonal matrix. A (t—s) Xt
semiorthogonal matrix R is called an orthogonal completion of S if and only

if the tx¢ matrix [ISE] is orthogonal (for a proof of the existence of such an
R, see Ito, 1969, p. 104).
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Lemma 2. Given any NXk matrix A of rank r<kZ<N, there exists a
semiorthogonal matrix S;(#XN) such that
S8, = A (ArA)-A!
Proor. Let
P=A(ATA)- A
and Q= (A'A)"A'A.
By the rule for the rank of a product matrix, we have
rank @ = rank A'A =rank A = r.
Further, we observe that both the matrices P and @ are symmetric and
idempotent. Therefore,
vank P=1tr P=tr Q=vrank Q=1r,

which is indicative that exactly # characteristic roots of the matrix P are
unity and the rest zero. Without loss of generality, we may assume that the .
first r characteristic roots of P are unity. It can then be shown (cf. Graybill,
1961, p. 13) that there exists an orthogonal matrix C(IVXN) such that

P=C'[(I)' g]c=cgcl,

where C, is a submatrix of C defined by the partition

C = [01] XN

Since C is orthogonal, the submatrix Ci(rXN) is necessarily semiorthogonai,
t.e, C,Ci=1,, and the.desired result follows if we put S;=C;. Q.E.D.

Cororrary. If S;(»XN) is a semiorthogonal matrix as in Lemma 2 and
S {(N—7#) XN} an orthogonal completion of S;, then

S;Sy=Iv— A{ATA")A!
and S;A=0.

The proof of this corollary is straightforward, thus omitted.

Now we are in a position to prove the existence of the transformation 7T
mentioned in the beginning [see (4)]. This will be done by constructing an
orthogonal matrix (for convenience, we shall make no notational distinction
between an orthogonai transformation and the corresponding matrix repre-
sentation) which serves our purpose. ’ So, let us consider the matrix

Wi B, (A’A)~A'ygx N
T= [W;“2 B, (A’A)*A’] (r—q)xN, (13)
S, (N—#)XN
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where W.=B;(A'A)B; (i=1,2), Wi the ordinary inverse of the positive
square root of the matrix W; (¢f. Ferguson, 1967, p. 106), and S, an orthogonal
completion of S; as introduced in the corollary of Lemma 2. Here the existence
of W2 (i=1,2) is guaranteed by the corollary of Lemma 1 which says that
W: (i=1,2) are positive-definite. By virtue of Lemma 2 and its corollary, it
can be easily checked that the matrix T given by (13) is indeed orthogonal.
Applying T to Y, we obtain the transformed matrix Y*=TY in the partitioned

form
Y¥ Wi By (ATA)-A'Y
[Yg‘:l = [W;m B, (A’A)-A! Y] . ~ (14)
Y¥ S, Y

Taking expectation on both sides of (14) yields

EY¥ {B,(A’A)-B;}~** B, 8
[5Yé‘] = [{Bz (A'A)-B;;~2 B, @] .
EY ¥ 0

Since now B,0=0 if and only if EY¥=0, hence the problem of testing the
hypothesis #:B,0=0 is equivalent to that of testing the hypothesis #,:8Y*=0,
The usual test procedures as exemplified by (1), (2) and (8) can then be
applied unaltered to test the new hypothesis #o:EY ¥ =0, using the hypothesis
S. P, matrix

H=Y}HY¥
and the error S.P. matrix
E=YHY¥,

To close, let us remark that (i) the matrices H and E are invariant to
the orthogonal transformation 7 given by (13); (ii) after the transformation
T has been made on Y, the expectation EY¥={B,(A’A)~B}}~Y2B,0 becomes

a matrix of nuisance parameters, and so Y} can be 1gnored since the latter
does not provide any useful information.
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