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Abstract

With the aid of matrix algebra, the author has examined the analytical
behavior of several sequences of products arising in some special Mendelian
semialgebras. These sequences can be directly applied to the study of change
in the distribution of genetic types produced in the successive nonoverlapping
generations of such genetic systems as are subject to linkage of loci, selfing,
self-sterility, sex-linkage, or mixed selfing and random mating.

Introduction

By a linear algebra A over a field % we shall mean a finite-dimensional
vector space over & on which a multiplication is defined such that with respect
to this multiplication 4 is a commutative ring (not necessarily associative)
and such that the vector space structure is interlocked with the ring structure
by means of the equation: a(zy)=(ax)y=x(ay) for all z, ye 4 and all ac %.
Such concept was first introduced in the study of Mendelian genetics by
Etherington [1939, 1940, 1941a, b, ¢]. His main idea is to construct a linear
algebra 4 over the field R of real numbers by identifying a basis, called the
natural basis, of 4 with a set {gi,...,9.} of distinct genetic types which exist
in a certain genetic system so that the multiplication table of 4 is given by

(1) 0:9i{=9;0:) =20 Tinngr (4, j=1,...,n),

where 7;;, is the probability of obtaining genetic type ¢; in a cross between
genetic types g¢; and ¢;. In some special cases, it is more natural to require
that, for given { and j, the 7;;»’s be determined only up to a proportionality
constant. Further, it may also happen that ¢;g;=¢;9;=0 for some § and j
because a crossing between genetic types g; and ¢; is impossible or otherwise
gives no offspring. For the sake of convenience, the class of linear algebras
described above will be generically referred to as Mendelian algebras. Strictly
speaking, these algebras should be called Mendelian algebras over R, for in

(1) Present address;: Mead Johnson Research Center, Evansville, Indiana, U, S, A,
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some algebraic situations it may call for the extension of ® to G, the field of
complex numbers. On the other hand, if the coefficient field is restricted to
the set ®° of nonnegative real numbers, they will then be called Mendelian
semialgebras over R°, in the sense that ®R° is in fact a semifield (cf. Rédei
[1967], p. 36). Similarly, a vector space with its coefficient field restricted to
R° will be called a semivector space over R°. ,

One major concern of Mendelian genetics is to study the distribution of
genetic types in the successive generations of a given genetic system. In this
connection, a distribution of genetic types in the initial generation may be
represented by a convex combination (coefficients being in R° and summing up
to unity) of those elements belonging to the natural basis of the underlying
Mendelian algebra or semialgebra. Such a convex combination will be referred
to as a population element. The successive generations (assumed to be discrete
and nonoverlapping in the sequel) are then representable by an appropriate
sequence of products (inclusive of powers) involving the initial population
element. By examining the analytical behavior of such a sequence, we may
thus be able to perceive the picture of the underlying genetic dynamics. In
this aspect, the following sequences are especially important: Let x and ¥
be two arbitrary elements of a Mendelian algebra or semialgebra. The #th
primary product of x by y, denoted by 2, is defined recursively as

(2) W=x; P=2Py ({=2,3,...)..

If in particular y=2x, then we may write a*=2{ and call it the ¢-th principal
power of x. Further, the #-th plenary power of x, denoted by 213, is defined
recursively as '

(3) ali=g; gUi=pli-lpli-11 (=2 3 ),

In the sequel, we shall be concerned with sequences of the above nomenclature,
together with a so-called sequence of M-products to be introduced later (see
§6), all arising from the various Mendelian semialgebras which represent such
genetic systems as are subject to linkage of loci, selfing, self-sterility, sex-linkage,
or mixed selfing and random mating.

Ever since the publication of Etherington’s pioneer works, many authors
have paid attention to a particular class of Mendelian algebras called genetic
algebras. A brief review of the theory of genetic algebras is therefore in order.
Let 4 be a Mendelian algebra with its coefficient field ® having heen extended
to the field ¢ of complex numbers, We say that 4 is a baric Mendelian algebra
if it admits a nontrivial homomorphism z—o(z) onto . Here o is called a
weight function of 4 and o(x), the weight of x (cf. Etherington [1939]). Let
X be the kernel of the weight function ® so that 4 is necessarily an ideal
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wof : 4. Schafer [1949] has pointed-out that the Mendelian algebra 4.-is baric
iff:it contains' an ideal ¥ such that the difference algebra A—J.is Aisomorphic
awith .G. For a fixed element a€ 4, let E, denote the linear ‘transformation
‘defined on 4 by x—za.’ FUrther, let I (4 ). denote the transformation aigebra
c0f 4 so:that.an arb1trary element- T € J (4) takes on: the form - :

T=al+/(Ea, Bay ..o

.where a;ec; I is the 1dent1ty elemen’c ‘of . J(A4), and f(.) is-a polynomial in
EapBayiviwowith: coefficients in’ G, Schafer {19491 has defined a genetic algebra
<to be a baric Mendelian algebra for which the coefficients of the characteristic
spolynomial . {AI—"T] ~depends- on the eleéments @i, @z ..+ only: through -their
tweights & (ar); wlags); oo While -Schafer’s: définition is given jn-a basis-free

smanner;yancther: definition has been supplied by Gonshor. {19711 i1 a*basis form.

where zoog-1 /lo;k~0 for: k<] and. /luk—O for 4, j>0 and ké max (z, 7)., The

~According: to: Gonshor; (1971) a Mendelian algebra-4 with extended coefficient
+fiéld G iis (dalléd a gepetic .algebra if - 4 has a’basis’® {co, ¢ s€x 213 sugh: that
;the muluphcatmn table of A ds g1ven by vl ST

ctcf zk oh]kck (Z,] 0 1 0y ” 1),

[
s 3

basis {c, €is - ,c,,ﬂ}ls said to be canonical and the values 2575 (7=90,1; woyn=1)
are called the frain roots of the genetic algebra T he genetlc algebra as charac-
terxzed by Gonshor is bar1c with w(c.,) 1, w(ck) O (k 1, 2 L, n=1), and has

‘1[1971], ;Théorem 2.,1). : fGonshor,, [1,960] xhas.also-*provep that__st; genett:e algebra

has exactly one non-zero idempotent if no train root thereof:equals: %, and
that the sequence of plenary powers of an element of We1ght 1lin a genetlc
algebra whose train roots other than 1005—1 all have absolute Value less tHan

4 converges - (coordinatewise) to-an idempotent; - “We note: that . such an iderh-

~potent:is impgortant’ in' genetical apphcatmns since: it represents a populaimn in

equilibrivm under random. mating.’

Q‘ :

‘While: the: theory!of genetic' algebras has delxvered elegant proofs of some

classical stability theorems in Mendelian genetics (see, e..g:, Etherinton® {1939,

1940, 1941a], Gonshor: [1960, 1965, 19711; and Holgate [1967]), it still Teaves

~much to be done-in the area where the conditions for baricity, geneticity and/or-
~idempotency; are not. satisfied or:difficult to check up. ' In this:paper we:shall
«give proofs of .several stability theorems for-the various sequences of products

‘,Kfor makmg supplementary remarks. et Pl o e k

~we mentioned earlier. Since the method of .approach-will be essentially that.of

,matrix algebra, it requires 110 ‘more than'" the setupf’of a Merrdelian Semialgebra,

¥
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For the discussion to be presented below, it is necessary to introduce a
few more conventions in notation: We shall use ®R°{g:;...,g.} to denote a
Mendelian semialgebra spanned by the basis {g,,...,¢.} over ®°. The!similar
notation will also be used for Mendelian algebras (including genetic algebras).
For any fixed clement @€ R°{gs,...,0,}, the linear transformation E.: z—xa
will be referred to as the maultiplication operator associated with @, and the
matrix representing this operator with respect to the given basis {gi,...,¢u}
will also be denoted by E,. Thus, insofar as the basis remains fixed, we shall
make no essential distinction between the product za and an, the image of x
under the operator E,. ] . -\

A Sequence of Plena‘ry”P‘owl'ersv From a Linkage SémialgeBra
Consider two linked biallelic loci in a dibidid population with recombination

fraction p(0Lo<% ). Suppose that one of the loci has alleles ¢, ¢ and the
other has af®, af?. Then there are four possible gametic types, namely,

an= a(l)a(z) a1s= a(l)a(2)’ A= a(l)aJ) Qo= a(l)a@)

If the individuals mate one another normally, the system may be represented
by the Mendelian semialgebra (R°{au, 21, A1, azz} Wlth multlphcatmn table

) an a1z . as R . Qs
an | an ¥ (an+aas) ¥ (autax) 3 (1_f())k(tl11+azz) -+ %—p(am—f-am)
757 /3% %‘(1"‘0)(6112"‘6121)4"2’0(4114‘&#2) z“(alz‘f'azz)
Qa1 - . 17251 ' ¥ (amtass)
Az . Symme‘tfic’ o ‘, B [25:]

We shall refer to R°{au, @iz, an, as} as a linkage semialgebra. In passing, it
may be noted that G{au, 13, Qa1 azy is in fact a genetic. algebra.

THEOREM 1. If z= 5116111'!'521dlz+531az1+541022 is a population element of
the linkage’ semlalgebra R°{ay1, ais, az, @y With recombination fraction
p{0zp<%), than the (¢+1)st plenary power of x is given by

(4) 2= {8, — (1= (1—p)")0i}au+ {Ea+ (1—(1—p)* )01} aue
+{u+ (1—=(1—p))0ijant+{En—(1—(1—p)*)d1}as,

where 81=£ufn—Enén, and .

(5)  at®l= grgxm—(511—-61)au+(521+61)a12+( Entoi)ant (Ea—01)ds.

Proof Let o

(6). U =2 san+6s, r11@e+Es, 10t i, 11100,

and let E;=E,r;3, the multiplication operator associated with the #-th plenary
power xt'Y, Then E; can be represented by the matrix - ‘
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[Eu'l"%fzt‘l‘%fst'l‘?(l—!’)&t : RS Tl AT
B 381t 3 08 : Tttt b (1=p)eart 3 €u
g \i'—|“ Jo B &t 06 % (1—p)éss
' 1 (1—=p)61sr CEoE 1t E
¥ &t 1 pfu o +(1=p)6er
: % (1—p)és: ' © EpbsetEba 1
3éutE (1—=p)§estEart 3 6us C Fobut b
F 08+ 36 , (1""9)51:""2‘52!"‘?53!‘!‘54!

Since then x““l—xl'lx!’l—xl’lE,, direct calculation of me; yields
(7) -70””]" (51:—'03:)011-1- ($zt+031)tlm+($st+031)dz1+(54:"03:)022; ‘

where 3:—-51:=4t“‘52t$s: (t—l, 2,'...).' Comparlng (7) Wlth (6) and 1teratmg,
We obtain
- _{s.-x-,-(l-—(l—pml for i=1,4,
(8) ST ek (1= (1—p))8 for i=2, 3,

thus estabhshmg equatlon (4). ;

The proof of equation (5) is trivial. Q‘E D.

We note that the limiting element #1®? in equatlon (5) is in fact an idem-
potent population element in ®R°{a11, @, @21, as:}. From the genetical point of
view, this implies that, in the absence of selection and other dlsturbmg factors,
the dlstrxbutlon of gametic types 1dent1ﬁable in terms of tWo loci in a random-
mating population will eventually reach a state of equlhbrmm.

The followmg is an immediate consequerce of Theorem 1.

COROLLARY. If in Theorem 1 p=+%, then

4y a=(g— (1= (38 ant at (1= ($)900as |
’ ‘ o +{531+(1“('2‘)')51}@1'1‘{541. (1=(%)*)01}as, and
() 2i=(Eu—d)ant (Guto)aut Gatd)ant Ga—dam.

According to this corollary, the system will tend to a state of equilibrium
the most rapidly when p=%, i.¢., when the two loci are unlinked or genetically
independent.

A Sequence of Primary Products From a Selfing Semialgebfa

Consider a biallelic locus of a diploid population which breeds by means
of selfing (as is often the case in flowering plants and in some lower animals).
Let a1, a; denote the.-alleles occurring at this locus so that there are three
possible genotypes, namely

(9) h=ma1, bi=wmas(=asa1), bs=asa
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This system can be represented by the Mendelian semialgebra $=®°{bs, b5, bs}
with multiplication table

(10) bibi=b1, biby=%b1+ % byt L bs, bsbs=bs
bibl'=bjbl=0 (Z, j=1: 2; 3; 1?’—']).

This semialgebra will be referred to as a selfing semialgebra. We note that 38
is baric, in the sense that it admits a weight function » onto ®R° defined by

w(z)=%&; for all 2=81b1-F&ba83bs in B,
The following theorem reflects the genetic dynamics of the selfing population
under consideration.
THEOREM 2. Let x=£b,+£,b,-+&:bs be a population element of the selfing
semialgebra 8=®°{bs, by, b} and let y=b;+b.+bs. Then the (2+1)st primary
product of & by vy is given by

(11) P ={6+F (1—(3)) &30+ (F ) 6bat {65+ F (1— (%)) 6:10s, and
(12) W= I,i_f{,i'”(tw: (&1 % &2)01+ (E5+ 3 £3) s
To prove this theorem, we need the following lemma:

LEMMA 1. Let x4(¢=1,2,...) be an #-dimensional row vector with real
entries, and consider the recursive equation

2ep=x:(Ala),

where A is an n#X#n real matrix of full rank and « is an eigenvalue of A with
multiplicity . If a is real, positive, and strictly larger in absolute value than
all the remaining eigenvalues of A, then

(13) Zep1=21S{J(A)/a}?S-?, and
oL 0]
(14) lim zy=2.5 [0 o] s-1,

where J(A) is the Jordan canonical form of A, S is an #X#» nonsingular matrix
such that S—'A S=J(A), and I, is the identity matrix of order 7.

The proof of this lemma is routine and can be derived, e. g., from Exercise
7, p. 16 of Verga [1962].

Proof of Theorem 2. Since z{%,=x%E,, where E, is the multiplication
operator associated with the element ¥, we may obtain by iteration

=, =aE}.
On the other hand, the operator E, can be represented by the matrix
1 0 0 '
(15) Ey= [% + %] ,
. 0 0 1
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which has eigenvalues 1, %, 1. By means of the nonsigular matrix

1 0 0
0 0 1

we can then express E, in the form
E,=SJ(E,)S™,

where J(E,)=diag (1, %, 1). Thus eduations (11) and (12) follow imme-
diately from Lemma 1. Q.E.D.

We note that the limiting element £%’ in equation (12) turns out to be a
population element with zaro weight. It is not an idempotent, however.

A Sequence of Normalized Plenary Powers From a
Self-sterile Semialgebra

Self-sterility also occurs very often in flowering plants. Genetic analyses
have revealed that this phenomenon may be regulated by different hereditary
mechanisms. The most frequent and most refined method is based on multiple
alleles that are expressed in the pollen grains as well as pistil tissues (East
and Mangelsdorf [1925]). A pollen grain functions only on a pistil neither of
whose two alleles at the self-sterile locus is the same as that of the pollen
grain, thus preventing selfing. Consider the case where there are m alleles
S1,..+;8n at the self-sterile locus. The system can then be represented by the
Mendelian semialgebra ®R°{si, ...,Su} with multiplication table

(16) $isi(=s38:) =% (si+s;3) (4, j=1,...,m; i#j)
S,'S,':O (i=1,...,M).

We shall refer to ®R°{s;,...,s,} as a self-éterz'éle‘semiqlgebm. It may be noted
that the Mendelian algebra G{s;, ...,s,} can not be genetic. For, as can be
seen from the multiplication table (16), all elements in the natural basis of
G{si, ...,Sn} are nilpotent (an element z of a Mendelian algebra is said to be
nilpotent if there exists an interger »>1 such that z”=0 and x”-'#0, where
z” is the 7-th principal power of z), which makes it impossible for Gis1, . 0y S}
to admit a weight function. ‘

We observed that a plenary power of a population element in the self-sterile
semialgebra ®°{si, ...,s,} Is not necessarily a population element. To rectify
this, we shall introduce the following definition: Let z be a population element
in a Mendelian semialgebra ®R°{g:,...,9.}. The ¢-th normalized plenary power
of z, denoted by XI'}, is then defined recursively as

y s

(17) Xil=g; XU1=XUu-uxit-i/y, , (¢=2,3,,..),

3
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where vy-1.is a normalizing factor obtained: by adding up all the coefficients’
appearing in a linear combination of ¢i,...,9, Which uniquely represents:the
product Xif-11 Xt/-11, Such a normalized plenary ‘power exists as:long as the
corresponding normalizing factor does not vamsh We are now in a pos1t1on
to present the next theorem which will help ‘shed some llght on ‘the genetlc
dynamics of a random mating popula’clon sub]ect to self- ster111ty

THEOREM 3. If z=3"_ & where mx2 and £;>0 for at least two 7’s,
is population elementiof the seli-sterile semialgebra R°{sy,...,sn,}, then the
sequency {XIf1) of normalized plenary powers of x converges (coordinatewise)
to !‘ ‘ -
(18) $[m1_2,=101($)35/#($),

where s;{z)=1 or 0 according as & is >0 or =0, and #(x) is the number of
nonzero &;’s in:gc, i R T

Proof. Let #(x)=r (2<r<m) and, without loss of generality, let £§;>0 for
i=1,...,7. Further, let XI’1~ZQ15”3, so that the assoc1ated mu1t1phcatlon
operator can be represented by the r><r matr1x

1 Eltj oy e ‘Ert g
51# 1"‘52}\ U Ere

Et'—:z' . X .
[éu Bar o 1"'—5,,J

It then follows that

(19) X”“l X”IEt/Vt—~ ,.=1$ft ""ésg)/vu

where y;=1=37_,62, is the normalizing factor. Now, let us write XIf1 in its
vector form, namely ' : : ‘

’ kX”]?(Eih V-\-"-;ért)s
and let B o
) ) D.(X[”) = diag (Elb vany Er’t'):

' |‘0 1 e 1]
11 0 e 1
A=l. 0\"“‘;. ' . J.
1 1 - 0

We may then write equation (19) in the matrix form
(20) erm—xmAD(Xm [REIAXOY, '

Where Xy denotes the transpose of Xm By deﬁnition (see, e. £., Kingman
{19611, p. 574) XI®1 ig an equ111br1um pomt of the system (20) if

(21) o XE= (XEIAD(XI®N }/XETTAXY,
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Since  the “diagonal ‘matrix D(XI®1) is obvmusly nonsingular, equation (21)
reduces to

(22) 1= (XI®IA)/XI®IA XN,
where I=(1, 1, 1). Solving equation (22) for X1, we obtain
C XI=(A-Y)IAT = (1)1,

: l""'(r'—z) 1 YT 1 ]
;1_ ' 1 1 ; -—(1‘-——2) (YT 1 .
A —- r_—l l . ) T AT ° ~|'
1 1 e = (r=2)]

Thus the proof is complete.. Q.E.D.

where

A Sequence of Normalized Plenary Powers From a
: Sex-Linked Semialgebra

Consider a sex-linked locus in an amphimictic diploid population with the
males being heterogametic. There are three distinct genotypes for the females,
namely aiai, a1as, az:a,, and two for the males, namely a1, as. Let

h=ma, b=aa,, bs—dzdz, bi=ay, bs—-az

Then the system may be represented by the Mendehan semlalgebra R°{by, ..., b5}
with multiplication table

(23) biby(=bsby) =% (b1+b4) blbs( bsbl) =% (by+b,)
bibe( =Dby) = ¥ (by+ba-H-bitbs),  bybs(= beby) = %} (by-tbs+by+bs)
© baba( =bybs) = ¥ (by+bs), bsbs( =bsh;) = =% (bs+bs)
bibi=0 o(i=1,...,5).

We shall refer to. ®°{by, ..., b;} as a sex-linked semzalgebra “As in the case of
a self-sterile semialgebra, this semialgebra is no genetic either. The genetic
dynamics of the successive generatlons in th1s systetn can: also be described
by a sequence of normalized plenary powers of a populatxon element as is
shown in the following theorem: '

THEOREM 4. If x-a1b1+191b2+7’1b3+$1b4+mb5 is a pdpulation element of
the sex-linked semialgebra ®°{bs, ...,bs} such that 0<$1+771<1 then the (#--1)st
normalized plenary power of x is given by

(24) XU+1=(2/9) {&1+ 28+ (— 3 ) & —81) &1 28+ (— 3 )92 (&, —&1) b1
+(2/9)[{&1+28+ (— 3 ) (Sa—E) ot 2pa - (— 3 ) 2 (e —m1) }
+{m+2772+(—l)‘“1(772-771)}{51+252+ (=3 ) 2(6:—81)}1b.
+(2/9) tnt 2+ (= 3 ) (m—ma) o+ 2me - (— 3 )8 *(wa—m)ibs
F(1/3) {6428+ (— 3 )1 (E—E1) 1y k ‘
+(1/3) it 20s+ (= 3 )* = (pa—m) }bs  (£=2, 3...), and
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(25)  XI®1=(2/9){(&:1426:)°01+2(51+285) (m+295) ba+ (91-+272) b5}
+(1/3){(&1+2€2) b+ (1+292) s},

where .

(26)  &=%(autEB)/(artBitr) and y=% (14 $B81)/ (e +BitT).
Proof. Let

(27) XU =gy 01b14 Braabe+Te 4108 E 110t 14105

and note that the multiplication operator associated with XI*1 has the matrix
representation

& e 0 it 0
{ $& ¥ (&¢+ ) X % (&t 7e) %+ (5:‘!'%)]
-1

E;=3 0 £ Nt 0 Sty 1.
la:+%ﬁr T+ 3P 0 a;+ %+ By T+ 36 J
0 a+ 5B T+ %6 a;+ 46 Te+%6:

By direct calculation, we obtain

(28) XU+i=XIi41E,/y,
=(1/ve) U@+ 3 B1) &bt {{at+ 4 Be) et (7 + %Bl)ft}bz‘{‘ (Te+ 3 Be)mibs
(a5 B:) (Eetme) byt (Ve+ % Be) (£447:)b5],

where ve=2(as+B:+7:) (§¢-+7¢). Comparing (28) with (27) and noting that
(29) Bt Te=Ertm=vi=% ({=2,8,...),

we obtain

ap31=28 10160

Bese1=2(E 41t 084260)
(30) C T =20 419

Eta1=F (E4+84-1)

Pe+1=F (9eF9e-1).

Since the first three eqations depends on the last two, the system (30) can be
solved by merely solving the last two equations simultaneously. Applying the
usual method for solving second-order difference equations, we find that

(31) E01= (1/3) {61428, (— % )12 (& —£1)}
Bre1=(1/3){m+ 27+ (—% ) 2 (p—m)}.

Substituting (31) into the first three equations of (30), we immediately see
that the result (24) ideed holds; that &; and %, are given by (26) can also be
checked up by setting #=1 in (28) and calculating the coefficiets of b, and bs.
The result (25) is obvious. Q.E.D.
The matrix E,; in this case is singular since the sum of the first three
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columns is equal to that of the last two: ' That the first three equations in (30)
depend on the last two is just a reflection of ‘this particular property of Ei.

The result (29) is indicative that, under the conditions set out for Theorgm
4, males and, females w:ll occur. with equal frequellcy in at most tow generatlons
of random matmgs ‘

It may also be noted that the limiting element XI®! in (25) is mnot a
population element unless & +7.=%, 4. e, unless males'and females occur with
equal frequency in the initial generation. It will certalnly become a populatlon
element when divided through by the normahzmg factor

(51+ﬂ1+1) (251+2771+5)/9

A Sequence of M-Products Arising in a Mixture of a Selﬁng
I R Semlalgebra and a Zygotic Semialgebra '

In the plant kmgdom, ,purely selfing populataons seldgm eXist—they are
to be found probably only in a plant breeder’s garden where the mating process
can be artificially controlled. So we shall proceed to lock into the genetic
dynamics of a population which' breeds by mixed selfing:and random 'mating;
First of all, let us define a miixture of two Mendelian semialgebras: Let A4;=
R§g1, ..., g, and A.=@R%¢y" .., ¢} be two Mendelian semialgebras with the
respective multiplication tables

(32) 0:95(=030:)=33.750e (i, j=1,...,n),.

(33) 0:9i(=039:)=23_73,0, (G, 7=1,...,n). :
Then, the Mendelian semialgebra 41,:=R°{gi, ..., 0.} Witl} multiplication table
(34) 90:95(=019:) =372 {(1=0)rD+-0r2.} (4, 7=1,...,n; 020<1)

is called a mixfure of 4, and 4,, and we shall symbol\i’ze‘ this by writing '
(35) Arg=(1—0)4;+04, (02021). o

Symbolically 4, may be regarded as a convex combination of 4; and.4s.

A notational difficulty has arisen when we write A=QR{g1, ..., Gu}y A=
R°{g1, .. 59a} and Ay =QR*{gy, ..., g}, together with their respective multi-
plication tables given in (32), (33) and (34). Algebraically 41, 4, and A1z
must not be regarded as 1dent1cal since their multlcatlon tables do not necessarﬂy
coincide. The merit of these notations, however, has been to signify that 4.,
Ay and 4y s as semivector ‘spacesover R are all spanned by a ‘commnion ‘basis
{01, ..., 04}, although they as Mendelian semialgebras may differ from one
andthes in the manner of ‘multiplication. * Further, these notations also reflect
the genetical fact that genetic systems having ‘the same set of genetlc types
miay breed by different means of ‘mating. G i :
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" For the discussion to follow, it is necessary to define a so-called M-product:
Let 410, 41 and 4, be defined as before and let z=2"_&igi and y=227_7:i0:
be two elements in the semivector space common to Ay, 41 and Ay The
product of x and y will then be denoted by xy, x*y or x -y according as it
belongs to Ay, A; or 4, These three forms of products are in fact related
to one another as follows:

=(1—-0)xxy+x -y (0L0L1).

In particular, the #-th M-product of x by y, denoted by 2%, is defined recursi-
vely as

(36) FP=x; sP={(1—0)2W®, xy-+0ol-11. g1 (1=2,3...),

where z¢, and 21*~'1 denote, respectively, the (f£—1)s¢ primary product of =
by y and the (¢—1)st plenary power of x.

Consider now a biallelic locus of a diploid population with two distinct
alleles ai, a,. If the population undergoes random mating, there are also three
distinct genotypes as are listed in (9) for a selfing population. However, the
system should be represented by the Mendelian semialgebra X=QR{b;, b,, ba}
with multiplication table

(37) b;b,‘zbi (i:l, 3), bzbz_‘l‘bl"l‘ b2+ 4'b39 b1b3(=b3b1)=b2
‘blbz(szbl)z%(bl'{‘bz), bzba(:—'babz):‘%‘(bz'{‘bs)-

Following Etherington’s ([19391, §7) nomenclature, we shall refer to this semi-
algebra as a zygotic semialgebra. Suppose then that the population breeds by
mixed selfing and random mating and thus the system can be represented by
a mixture H=R°{b1, bs, b3} such that

(38) M=(1—0)p+0Z (0<0«1),

where ¢=QR°{b;, by, by} is the selfing semialgebra introduced in §3 and Z=
@R°{by, bs, bs}, the zygotic semialgebra just described above. The multiplication
table of i is given by

(39) bibi=b; (i=1, 8), buby=%b1+%by+Fbs, Dibs(=0shy) =0,
b1b2(=b2b1)=% (b1+b2), b2b3(—b3b2)—%‘0(bz+bs)-

It may be noted that the mixture ¢ is baric, in the sense that it admits a
weight function @ onto ®R° defined by

(40) o(x) =08+ %‘(1'}‘0){’2‘!‘053 for all x=&by+E:b,-+830, in K.

. The genetic dynamlcs of a mixed-selfing-and-random- matmg populdtlon can
now be described by the following theorem:
THEOREM 5. Let #=(1—0)¢+0% (0<6<1) bea mixture of the selfing
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semialgebra ¢=@R°{by, by, bs} and the zygotic semialgebra Z =®R°{by; b, b5}, let
o=8b1+8:b,-+&:b; be a population element of (, and let y=>b;+b,-+bs, Then
the (#+1)st M-product of z by ¥y is given by :

(41) o =[(1—(1-0)")¢*+ ((1—0)/(1+0)) {(1+0) (1—~(1—0)!-1)
- —0(1—(F (1—0)) ) o+ (1—0) 51+ 3 (1—(3))4:) 10
+0(40/(14+0)) (1— (% (1—0))!) Y-+ (£ (1—0))*€:1bs
+ L (A= (1=) )Y+ ((1=0)/ (140) ) {(14-0) (1— (1—=0)*-2)
—=0(1— (% (1~0)) 1) oY+ (1—0) (&a+ % (1—( % )?)£:) 105, and
(42) 2P ={P?+((1—0)/(1+0)) o¥}bi+{(40/(140) ) p I} b,
+ {0 ((1=0)/ (1+6)) o} b,
where ¢=8&+%¢; and Yy=£&-+%&,.
We shall prove this theorem via the following lemma: ;
LEMMA 2. Let x:(t=1,2,...) and ¥:(¢=2, 3,...) be n-dimensional row
vectors with real entries. Let #, be a positive integer such that #>¢{>y.=c,
a constant vector, and consider the recursive equation '

(43) Zp=2(Af @)+ BY s,

where A is an #Xzn nonnegative real matrix of full rank and «, B are real
numbers with a>y(A), the spectral radius of ‘A. Then, the following holds:

" e {z-;s{J(A)/a}fs~1+ﬁzg;#oy,_,HS{J(A)/a}*S-l for 1<t
- 2SI (A) [a}S=+BcS TS {I(A) fa}*S—1

B Wi-enSIT(A) @} 1S for
(45) o ’}irgw,:aﬁc(al,,—'-A)-l, :

where S, J(A) and I, are defined similarly as in Lemma 1.  Further, if the
absolute values of entries in ¥, are <1 for all ¢ and the condition t>t@:>y‘}=c
is replaced by the condition 1‘21% ys=c; then equation (44) reduces to
(46) ‘w:+1=-7015{J(A)/w}‘S”1+BZ",;10y:—s+1S{J(A)/a}’S”’ (=1, 2,'---‘)‘
and equation (45) holds unaltered.

While equations (44)-and (46) can be obtained- by direct iteration, the rest
of the lemma follows from Theorems 1.4 and 3.8 of Varga ([19621; p. 13 and

83, 'réspectively) and from the Dominated Convergence Theorem of Power Series
(see, e.g., Eggleston [1962], p. 63).

Proof of Theorem 5. By definition, o ;
» rW=p; xP= (1;0)30;191* YOI g1 (2=2,3,...).
Here x as a population element in. ¥ has the property that

Ul - gl Y (£=2,3,...),
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which has been proven by Etherington  ([19391, p. 2563/}, On the. other hand
we have (see proof of Theorem 2 in §3) .

xRy x y=2Ey,
where E; is the same as given in (15). Thus,
¥, = (1-0)xPE,+ 020 (=1, 2,...),

and the theorem follows immediately from Lemma 2. Q.E.D.

We note that the limiting element in equation (42) is 1ndeed a population
element. It is hardly an idempotent, however. -

As immediate consequences of the above theorem, we obtain the following
corollaries:

COROLLARY 1. If in Theorem 5 6=0, then Theorem 5 reduces to Theorem
2. ‘

COROLLARY 2. If m Theorem 50=1, then We have g

.(47) . ——xm—<&+zez>2b1+2(ex+1ez>(ea+%ea)bs+(sa+%embs ‘
A(t=1,2,...).
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