The effect of chemical modification and additives on the stabilities of lipase from Aspergillus niger ${ }^{1}$

Jei-Fu Shaw and Chu-Hsiang Chang ${ }^{2}$
Institute of Botany, Academia Sinica
Nankang, Taipei, Taiwan 1.1529, Republic of China

(Received September 25, 1987; Accepted December 12, 1987)

Abstract

The lysine residue of A. niger lipase was modified with ethyl acetimidate to yield ε-acetamidinated lysine. The modified enzyme showed increased activity toward p-nitrophenyllaurate hydrolysis and enhanced stability toward heat and SDS denaturation. The Vm increased 57% and Km increased from 1.43 mM to 2.22 mM after modification. The heat denaturation rate constants for native and modified lipase at $62^{\circ} \mathrm{C}$ and pH 5.6 were 0.035 and $0.01 \mathrm{~min}^{-1}$, respectively. The residual activities for native and modified lipase in 2% SDS for 20 min were 50% and 68%, respectively.

Some carbohydrates, polyhydric alcohols and neutral salts can increase the thermal stability of lipase. The protective effect of 0.1 M additives at $62^{\circ} \mathrm{C}$ and pH 5.6 followed the order: glucose $>$ sucrose $>$ mannose $>\mathrm{MgCl}_{2}>\mathrm{BaCl}_{2}$, sorbitol $>$ glycerol. ZnCl_{2} significantly destabilized the enzyme. Anions and monovalent cations either had no protective effect or slightly destabilized the enzyme.

The activation energies of thermal denaturation of lipase in the absence, in the presence of 0.1 M glucose and in the presence of $0.1 \mathrm{M} \mathrm{MgCl}_{2}$ were 71,45 and $56 \mathrm{Kcal} / \mathrm{mole}$, respectively. The lipase stability increased as the added glucose concentration increased. However, MgCl_{2} increased the thermal stability of lipase at low concentration but destabilized the enzyme at high concentration (1.44 M).

Key words: Aspergillus niger; Carbohydrate; Chemical modification; Lipase; Polyhydric alcohols; Stability.

Introduction

Lipase \{EC 3.1.1.3\} has been widely used in fats and oil industry (Posorske, 1984). The enzyme stability is very important for their application in biotechnology. There are various strategies for the stabilization of enzyme activity including enzyme immobilization (Cheng and Shaw, 1980; Cheng and Shaw, 1981; Shaw and Cheng, 1983;

[^0]Chang and Shaw, 1986; Chang and Shaw, 1987; Shaw et al., 1987.), selective chemical modification (Kutuzova et al., 1984), the addition of neutral salts and ligands (Jenks, 1969; Shaw and Smith, 1976). Recently, we discovered that Aspergillus niger lipase efficiently catalyzed hydrolysis and alcoholysis of fully acylated aldose for the preparation of acyl derivatives of 1-hydroxy aldose, which was the useful intermediates for medicines and pesticides (Shaw and Klibanov, 1987; Shaw and Liaw, 1987). In the present work, we have studied the effect of chemical modification and various additives on the stabilities and activities of

Aspergillus niger lipase, which would provide insight into enzyme stabilization mechanism and be useful for lipase application.

Materials and Methods

Materials

Lipase from Aspergillus nigers (AP 6), which had a specific activity of 63.7 Amano units $/ \mathrm{mg}$ solid, was purchased from Amano Pharm. (Nagoya, Japan). The Amano unit was defined as the amount of lipase to liberate $1 \mu \mathrm{eq}$ of acids per \min, in a reaction mixture containing 5 ml of olive oil and 4.0 ml of 0.1 M phosphate buffer (pH 6.0) at $37^{\circ} \mathrm{C}$. Dialysis membrane (Spectra/por 4,MWCO 12,00014,000) was from Spectrum Medical Industries, (Los Angeles, CA). Ethyl acetimidate and p-nitrophenyllaurate were obtained from Sigma Chemical Co. (St. Louis, MO). All other biochemicals and chemicals were of reagent grade.

Enzme Assay

The lipase activity was assayed by a spectrophotometric method according to Amano technical bulletin for lipase G assay. Amano AP 6 lipase 0.05 ml was added to 0.95 ml of substrate solution (containing $0.85 \mathrm{mg} p$-nitrophenyllaurate and 2.1% Triton X-100 in 1 ml of 52.0 mM acetate buffer, pH 5.6) preincubated at $37^{\circ} \mathrm{C}$ for 5 min , After 15 min at $37^{\circ} \mathrm{C}$, the reaction was terminated by the addition of 2 ml of acetone and the absorbance at 140 nm was measured. For the control reaction, the enzyme solution was added after the addition of acetone. One unit of lipase is defined as the amount of enzyme which can release one micromole of p-nitrophenol under the above condition. The enzyme concentrations used were such that kept the enzyme reaction at initial velocity conditions.

Acetamidination of Enzyme

The ε-amino groups of lysine residues in lipase were acetamidinated according to Tuengler and Pfleiderer (1977). Lipase AP 6 (15 g) were dis-
solved in 60 ml pyrophosphate buffer ($0.1 \mathrm{M}, \mathrm{pH}$ 8.7) and dialyzed against 10 mM phosphate buffer (pH 8.7) to remove low molecular weight additives. Thirty ml of ethyl acetimidate $(150 \mathrm{mg} / \mathrm{ml}$ in 0.1 M phosphate buffer, pH 8.7) were mixed with 30 ml of the dialyzed enzyme solutions with stirring for 1.5 h at room temperature. The reactions were stopped by dialysis againt 10 mM phosphate buffer (pH 7.0) at $4^{\circ} \mathrm{C}$. After dialysis the pH was adjusted to 5.8. For comparison, control samples were treated by the same procedure except ethyl acetimidate solution was replaced by phosphate buffer alone.

Measurement of Protein

The protein content was determined by the method of Lowry et al. (1951) using bovine serum albumin as standard.

The Effect of Acetamidination and Various Additives on Lipase Stability

The lipase stabilities were examined by ther mal inactivation kinetics. Prior to use in inactivation studies, lipase was dialyzed against 10 mM potassium phosphate buffer (pH 5.8). Various additives including carbohydrates, neutral salts and polyhydric alcohols were dissolved in the same potassium phosphate buffer. Typically, 1 ml of lipase was mixed with 1 ml of various additive solutions and immersed in a thermostated water bath. After certain period, $50 \mu \mathrm{l}$ was removed, mixed with 0.95 ml of p-nitrophenyllaurate solution and assayed for the residual enzyme activity (see "Enzyme Assay"). Unheated sample was used as the control. Concentrations, time and temperature are given in the figure legends. First-order rate constants for inactivation were obtained from the slopes of least square fits of logarithm fractional activity remaining versus time.

Results

The Effect of Acetamidination on Lipase Activity and Stability

With p-nitrophenyllaurate as substrate, the acetamidated enzyme showed increased specific activity, 78.81 units/mg, which was 1.54 times higher than the unmodified enzyme, 51.29 units $/ \mathrm{mg}$ under the assay condition. From Lineweaver-Burk plot (Fig. 1), the Vm and Km for modified enzyme were 28.6μ mole $\cdot \mathrm{min}^{-1} \cdot \mathrm{mg}^{-1}$, and 2.22 mM respectively, while those for the unmodified enzyme were 1.82μ mole $\cdot \mathrm{min}^{-1} \cdot \mathrm{mg}^{-1}$ and 1.43 mM respec-

Fig. 1. Lineweaver-Burk plots for the hydrolysis of p-nitrophenyllaurate by Aspergillus niger lipase. \bigcirc - modified; control

Fig. 2. The plot of Ln (residual activity) vs. incubation time at various temperature for the unmodified and modified lipase. Residual activity of lipase was assayed with p-nitrophenyllaurate as substrate. unmodified (), $61^{\circ} \mathrm{C}$; () $63^{\circ} \mathrm{C}$. modified (O), $61^{\circ} \mathrm{C}$; (\square), $63^{\circ} \mathrm{C}$.
tively. Therefore, both Vm and Km were increased as a results of acetamidination of jipase. Both the modified and unmodified enzyme followed first-order kinetics in thermal inactivation experiment (Fig. 2). The thermal inactivation rate constants for unmodified enzyme at $61^{\circ} \mathrm{C}$ and $63^{\circ} \mathrm{C}$ were $0.036 \mathrm{~min}^{-1}$ and $0.052 \mathrm{~min}^{-1}$ respectively, while those for acetamidinated enzyme were $0.01 \mathrm{~min}^{-1}$ and $0.035 \mathrm{~min}^{-1}$ respectively. Therefore, the modified enzymes were 3.6 times (at $61^{\circ} \mathrm{C}$) and 1.5 times (at $63^{\circ} \mathrm{C}$) more stable than the unmodified lipase.

The modified enzyme also showed enhanced stability against detergent denaturation. The residual activites of modified and unmodified enzymes were 68% and 56% respectively after incubation with 1% sodium dodecyl sulfate at pH 5.6 and $25^{\circ} \mathrm{C}$ for 20 min ,

Effect of Additives on Lipase Stability

As shown in Table 1 , at 0.1 M concentration some carbohydrate, polyhydric alcohols and neutral salts provided significant protection of lipase from thermal inactivation, while some salts made the enzyme more heat labile. For carbohydrates, glucose and sucrose offered the best protective effect, followed by mannose, while galactose showed little effect. For the protective effect of polyhydric alcohols on lipase activity, sorbitol>giycerol> ethylene glycol. For neutral salts effect, divalent cations showed better protective effect, $\mathrm{Mg}^{2+}>$ $\mathrm{Ca}^{2+}>\mathrm{Ba}^{2+}$, however, Zn^{2+} greatly decreased the thermal stability of lipase. Since Zn^{2+} also greatly inhibited the lipase activity, the decrease of the enzyme stability was attributed to the conformational change induced by Zn^{2+} binding. It was proposed that the stabilizing effect of cations and anions should decrease in the following order (Von Hippel and Schleich, 1969): $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}^{+}>\mathrm{NH}_{4}{ }^{+}$ $>\mathrm{K}^{+}, \mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Ca}^{2+}>\mathrm{Ba}^{2+} ; \mathrm{SO}_{4}{ }^{2-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>$ $\mathrm{NO}_{3}^{-}>\mathrm{ClO}_{4}^{-}>\mathrm{SCN}^{-}$, with anions and cations being additively effective. This is in accordance with Hofmeister lyotropic series. According to the

Table 1. Effect of various additives on lipase thermostablity
The lipase samples in the presence of 0.1 M additives in 10 mM phosphate buffer (pH 5.8) were heated at $62^{\circ} \mathrm{C}$ for 23 min and assyed for residuhl activity. The enzyme activity was assayed in triplicate.

Additives		Residual activity (\%)
Control		57
Carbohydrate (0.1 M)	glucose	98
	galactose	59
	mannose	89
	sucrose	96
Polyhydric alcohols $(0.1 \mathrm{M})$ Neutral salts (0.1 M)	ethylene glycol	58
	glycerol	62
	sorbitol	66
	$\mathrm{NH}_{4} \mathrm{Cl}$	57
	KCl	50
	NaCl_{2}	51
	CaCl_{2}	70
	MgCl_{2}	75
	BaCl_{2}	66
	ZnCl_{2}	26
	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	49
	NaNO_{3}	44
	NaCl	51
	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	43

theory, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ should be a strong stabilizer of the enzyme. However, in the present experiment with A. niger lipase, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ not only had no protective effect but also slightly decreased the stability of lipase (Table 1). Other neutral salts tested had little effect on lipase stability.

Effect of Glucose and MgCl_{2} on Lipase Inactivation Kinetics

The effects of carbohydrate and neutral salt on lipase were apparently different. As shown in Figs. 3 and 4, the lipase stability increased as glucose concentration increased, while MgCl_{2} increased the lipase stability at lower concentration but decreased the lipase stability at higher concentration. The first-order thermal inactivation rate constants for lipase in the presence of $0,0.16$,
0.04 and 1.44 M glucose concentration at $62^{\circ} \mathrm{C}$ and pH 7.0 (potassium phosphate buffer) were 0.023 , $0.014,0.01,0.002 \mathrm{~min}^{-1}$, respectively while those in the presence of $0.10,0.04$, and $1.44 \mathrm{M} \mathrm{MgCl}_{2}$ concentration under the same condition were 0.018 , 0.022 and $0.026 \mathrm{~min}^{-1}$, respectively. It is interesting to see that lipase in the presence of 0.19 M or $0.64 \mathrm{M} \mathrm{MgCl}{ }_{2}$ concentration exhibited higher activity under short time (10 min) than unheated control (Fig. 4). An intermediate enzyme form with higher activity might be involved in the thermal inactivation process (Henley and Sadana, 1985).

The inactivation rate constants (k) of lipase at different temperatures were analyzed by Arrhenius plot (Fig. 5). From $\ln k=\ln \mathrm{A}-(\mathrm{Ea} / \mathrm{R}) 1 / \mathrm{T}$, where A, R and T represent constant, gas constant and absolute temperature respectively, the activation energy Ea can be calculated from the slope. From Fig. 5, it was clear that both MgCl_{2} and glucose at 0.1 M showed high temperature

Fig. 3. Effect of glucose concentration on lipase thermal stability. The lipase samples in the pressence of varying glucose concentration in 10 mM phosphate buffer (pH 5.8) were heated at $62^{\circ} \mathrm{C}$ for various time intervals and assayed for residual activites.

Fig. 4. Effect of $\mathrm{Mg} \mathrm{Cl}_{2}$ concentration on lipase thermal stability. The lipase samples in the presence of varying MgCl_{2} concentration in 10 mM phosphate buffer (pH 5.8) were heated at $62^{\circ} \mathrm{C}$ for various time intervals and assayed for residual activities.

- 0 M ; $\bigcirc \bigcirc 0.64 \mathrm{M}$ ■-曋 1.44 M .

Fig. 5. Arrhenius plots of $\operatorname{Ln} k$ vs. reciprocal of temperature. k is the thermal denaturation rate constant at various tempeatures.
stabilization effect, i.e., the stabilization can be observed only above the isokinetic temperature and is greater as the temperature is higher (Kutuz et al., 1984). The activation energies of
thermal denaturation of lipase in the absence, in the presence of 0.1 M glucose and in the presence of $0.1 \mathrm{M} \mathrm{MgCl}_{2}$ were 71,45 and $56 \mathrm{Kcal} / \mathrm{mole}$, respectively.

Disseusion

The development of enzyme engineering for industrial applications required the improvement of enzyme stability such that enzyme can be used over prolonged period of time. In the present work, we found that actamidination of lipase and the addition of carbohydrate effectively increassed the lipase stability, while divalent cations and polyhydric alcohols were less effective (Fig. 2 and Table 1). On the contrary, some neutral salts such as ZnCl_{2} greatly reduced the lipase stability (Table 1).

Acetamidination of proteins is a selective and mild modification method for ε-amino groups of lysine residues in proteins without altering the charge. The acetamidinated lysine,

has an arginine-like structure with a similar $p k$ value ($p k=12.5$) (Means and Feeney, 1971; Tuengler and Pfleiderer, 1977). Since lysine is not involved in lipase active site, the acetamidination presumably modifies the lysine residues located on enzyme surface. Generally chemical modification of enzymes leads to reduced enzme activity. It has been reported that acetamidinated lactate dehydrogenase reduce 20% enzyme activity as compared to the native enzyme but greatly increased stability toward heat, alkaline denaturation and tryptic digestion (Tuengler and Pfleiderer, 1977). In the present work, the acetamidination also significantly increased the enzyme stabillity (Fig. 2) and suprisingly, increased the enzyme activity as well (Fig. 1). It is possible that modification of lipase induces conformational change which increases the catalytic
efficiency and thermostability. It has also been proposed that increase of the water layer around the enzyme or ionic effects due to the change of ε-amino groups of lysine to arginine-like groups would lead to the enzyme stabilization. (Tuengler and Pfleiderer, 1977). The thermostable enzyme from thermophilic microorganism differs from the thermolabile one by a higher arginine/lysine ratio (Kutuzova et al., 1984).

For unspecific effect of additives, it has been proposed that compounds having a strong interaction with the enzyme but low interaction with water will favor enzyme denaturation due to the stabilization effect on unfolded structure. On the contrary, compounds which interact strongly with water but weakly with the enzyme will enhance enzyme stability by reducing the amount of free water (water activity) (Monsan and Combes, 1983). Therefore, carbohydrate, polyhydric alcohols and neutral salts which have water-activity depressive effect would in general have protective effect on enzyme. It is clear that carbohydrate and polyhydric aicohols in general have protective effect on lipase (Table 1). The protective effect followed the order: glucose $>$ sucrose $>$ mannose $>$ sorbitol $>$ glycerol $>$ galac tose. Since glycerol has a slightly greater wateractivity depressing effect than sorbitol but has less protective effect on lipase, the protective effect of polyhydric alcohol is not simply related to the modification of water activity of the medium. Recently, it becomes clear that lipase can accept alcohols, polyhydric alcohols, mono-and disaccharide as substrates in alcoholysis of ester or ester formation reaction (Seino et al, 1984; Shaw and Klibanov, 1987; Shaw and Liaw, 1987. Therefore, the protective effect of carbohydrates and polyhydric alcohols probably involves both nonspecific water activity depressive effect and specific ligand binding effect.

For the nonspecific effect of neutral salts, it has been proposed that the stabilization effect of
neutral salts is due to the salting out effect of hydrophobic residues from the surface into the interior of enzyme molecule which would compress the enzyme conformation and leads to the higher thermal stability of enzyme (Klibanov, 1983). The stabilization effects of cations and anions should correlate with Hofmeister lyotropic series, According to the theory $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ should be a strong stabilizer. However, in the present experiment only some divalent cations $\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$ and Ba^{2+} provided some protective effect. The anions and monovalent cations tested either had no protective effect or made the lipase more heat labile. ZnCl_{2} (0.1 M) greatly destabilized the lipase (Table 1). MgCl_{2} increased the lipase stability at lower concentration but destabilized the lipase at higher concentration (Fig 4). These results suggest that the effects of salts on lipase stability are largely due to specific binding of cations to the lipase molecule inducing conformations which are either more heat stable or labile.

Literature Cited

Chang, R.C. and J.F. Shaw. 1986. Enhanced stability of papain by multiple point attachment on chitosan. pp. 498-499. In O. L. Kon et al. (eds) "Contemporary Themes in Biochemistry", ICSU Press. Cambridge.
Chang, R.C. and J.F. Shaw. 1987. The immobilization of Candida cylindracea lipase on PVC, chitin and agarose. Bot. Bull. Academia Sinica 28: 33-42.
Cheng, P.S. and J. F. Shaw. 1980. Studies on the immobilization of bromelain on PVC powder. Natl. Sci. Counc. Monthly, ROC 8: 313-322.
Cheng, P.S. and J.F. Shaw. 1981. Studies on the immobilization of papain on PVC powder. Natl. Sci. Counc. Monthly, ROC 9: 135-145.
Henley. J. P. and A. Sadana. 2985. Categorization of enzyme deactivations using a series-type mechanism. Enzyme Microb. Technol. 7: 50-60.
Jenks. 1969. Catalysis in Chemistry and Enzymology, chap 7. McGraw-Hill. New york.

Klibanov, A. M. 1983. Stabilization of enzymes against thermal inactivation. Adv. Appl, Microbiol. 29: 2-27.
Lowry, O. H., M. J. Rosekrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-269.

Means，G．E．Feeney．1971．Chemical Modification of Pro－ tein．Holden Day Inc．，San Francisco．
Monsaan，P．and D．Combes．1983．Effect of water activity on enzyme action and stability．pp．48－60．In A．I． Laskin et al．（eds．），Enzyme Enigeering 7．New York Academy of Science，New York．
Posorske，L．H．1984．Industrial－scale application of en－ zymes to the fat and oil industry．JAOCS 61：1758－ 1760.

Seino，H．，T．Uchibori．．T．Nishitani，and S．Inamasu． 1984. Enzymatic synthesis of carbohydrate ester of fatty acid （1）．Esterification of sucrose，glucose，fructose，and sorbitol．JAOCS 61：1761－1765．
Shaw．J．F．，R．C．Chang，and Y．J．Wang．1987．Kinetics of papain immobilized on chitosan by multiple point attachment．Bot．Bull．Academia Sinica 28：131－138．
Shaw．J．F．and P．S．Cheng．1983．Evaluation of molecular properties of bromelain and papain immobilized on PVC powder from kinetic and thermodynamic par－ ameters．Proc．Natl．Sci．Counc．part B．ROC 7：158－ 164.

Shaw．J．F．and A．M．Klibanov．1987．Preparation of various glucose esters via lipase－catalyzed hydrolysis of glucose pentacetate．Biotechnol．Bioeng．29：648－ 651.

Shaw．J．F．and E．T．Liaw．1987．Preparation of acyl derivatives of 1 －hydroxy aldose by lipase－catalyzed hydrolysis or alcoholysis of fully acylated aldose in organic solvent．In C．Laane，J．Tramper and M．D． Lilly，（eds．），Biocatalysis in Organic Media．Elsevier， Amsterdam，pp．233－239．
Shaw．J．F．and W．G．Smith．1970．Conformations of lysine－ senstitive aspartokinase．Biochim．Biophys．Acta 422： 302－308．
Tuengler，P．and G．Pfleiderer，1977．Enhanced heat， alkaline and tryptic stability of acetamidinated pig heart lactate dehydrogenase．Biochim．Biophys．Acta 484：1－8．
Von Hippel，P．H．and T．Schleich．1969．Structure and stability of biological macromolecule．Dekker．New Yory，pp．417－574．

化学修飾與添加物對黑数菌脂肪酶稳定性之影響

萧介夫 張莉香
中央研究院植物研究所

加而且對於熱與 SDS 變性作用之穏定性提高。修䬷醿素之 Vm 增加 57% ，而 Km 從 1.43 mM 增大爲 $2.22 \mathrm{mM} \circ$ 未修飾與修飾脂眆酶在 $62^{\circ} \mathrm{C}$ 與 pH 5.6 下之熱變性常數各签 0.035 與 $0.01 \mathrm{~min}^{-1}$ 於 $1 \% \mathrm{SDS}$ 中 20 分鐘後之殘除活性，未修飾具修飾酵素各爲 56% 與 68% 。

單價陽離子對酵素棌定性没有什率影響。

[^0]: ${ }^{1}$ Paper No. 338 of the Scientific Journal Series, Institute of Botany, Academia Sinica.
 ${ }^{2}$ Present address: Department of Marine Food Science, National Taiwan College of Marine Science and Technology, Keelung, Taiwan, R.O.C.

