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Protease activities before and after germination of garlic

(Allium sativum L.) bulbs
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Abstract. When casein was used as a substrate, garlic bulbs had lower proteinase activity levels before germination
than after. The opposite was observed with hemoglobin as the substrate. Before germination, when 4-nitroanilides
were used, Ala-Ala-Phe-Na was hydrolyzed most rapidly at pH 3.4, Ala-Ala-Ala-Na and Ala-Ala-Phe-Na were hy-
drolyzed most rapidly at pH 7.0, and Gly-Na, Ala-Na, and Met-Na were hydrolyzed most rapidly at pH 8.9. When
[B-naphthylamine derivatives were used, Lys-Nap and Arg-Nap were hydrolyzed most rapidly at pH 3.4, Lys-Nap,
Trp-Nap and Arg-Nap were hydrolyzed most rapidly at pH 7.0, and Ala-Nap, Trp-Nap, and Lys-Nap were hydro-
lyzed most rapidly at pH 8.9. After germination, when 4-nitroanilides were used, Ala-Ala-Ala-Na, Gly-Nap, and
Ben-Arg-Nap were hydrolyzed most rapidly at pH 3.4. This was not observed before germination. Gly-Na was hy-
drolyzed most rapidly at pH 7.0 (more than four times the rate before germination). When B-naphthylamine deriva-
tives were used, Tyr-Nap, Ben-Phe-Nap, Ser-Nap, and Cbz-Phe-Nap were hydrolyzed most rapidly at pH 3.4. Trp-Nap,
Tyr-Nap, Phe-Nap, Arg-Nap, and Pro-Nap were the five leading substrates at pH 7.0 and 8.9. Garlic enzymes hydro-
lyze derivatives of 4-nitroaniline and S-naphthylamine of amino acids and peptides differently at different pHs. The
same was observed for those of onion.
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Abbreviations: Ace, acetyl; Ben, benzoyl; Cbz, benzylcarbonyl; Cp, N-3-(carboxy propionyl)-; Hip, hippuryl; Mx,

methoxy; Na, nitroanilide; Nap, naphthylamide.

Introduction

There are many reports of plant protease activities in
the literature. Most reports are on legumes (Citharel and
Garreau, 1987; Couton et al., 1991; Dunaevsky and
Belozersky, 1989; Collier and Murray, 1977; Crump and
Murray, 1979; Elleman, 1974; Mikkonen, 1986;
Mikkonen, 1992; Wynn and Murray, 1985; Yamaoka et
al., 1990; Yamaoka et al., 1994; Yu and Greenwood, 1994);
some are on crops (Horiguchi and Kltagishi, 1976;
Kolehmainen and Mikola, 1971; Vodkin and Scandalios,
1980; Waters and Dalling, 1983); some on vegetables
(Kitamura and Maruyama, 1985; Lin and Chan, 1990); and
a few reports are on other plants (Ninomiya et al., 1981;
Pallavieni et al., 1981). Protease activities in a variety of
plants are reported in two books edited by Dalling (1986).
Aspartic proteinase and some aminopeptidase activiteis are
present in ungerminated seeds. Some of these enzymes
have been purified and cloned (Kolehmainen and Mikola,
1971; Ninomiya et al., 1981, 1983; Runeberg-Roos et al.,
1991; Salmia and Mikola, 1975; Sarkkinen et al., 1992).
Cysteine proteinases (Shutov and Vaintraub, 1987) and
carboxypeptidase (Dunaevsky et al., 1987) are expressed
in germinating and post-germinating seeds.
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Aminopeptidases are expressed in sprouts of sweet po-
tato (Lin and Chan, 1992). There are two major storage
proteins in soybean (Glycine max (L.) Merrill) seed—
glycinin and B-conglycinin. During germination and early
growth, these storage proteins are degraded by proteoly-
sis. The predominant pattern is one of limited proteolytic
cleavage by proteases specific to the reserve protein, fol-
lowed by more rapid proteolysis by less specific proteases
(Muntz et al., 1985; Shutov et al., 1982). Several soybean
proteases have been described, including six proteolytic
enzymes from ungerminated seed, which were separated
by anion-exchange chromatography (Weil et al., 1966),
two carboxypeptidases from germinating soybean (Kubota
et al., 1976), two endopeptidases, one exhibiting an acidic
pH optimum and the other a basic pH optimum (Bond and
Bowles, 1983), and a trypsin-like protease (Nishikata,
1984). Although some developmental patterns occur in
some seed tissues, different organs within the same seed-
ling may display markedly different patterns of changing
proteolytic enzyme activities, as evidenced by the results
of studies comparing pea radicles to pea cotyledons
(Crump and Murray, 1979).

There is much literature about the beneficial effects of
some components of garlic (Apitz-Castro et al., 1994;
Kojima et al., 1994; Lewin and Popov, 1994; Lin et al.,
1994; Yeh and Yeh, 1994), but studies of garlic proteases
have rarely been reported. We report proteolytic activities
of garlic (4/lium sativum L.) bulbs before and after ger-
mination.
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Materials and Methods

Chemicals

Casein, hemoglobin, and synthetic substrates were used
as the substrates for proteolytic enzymes. For simplicity,
the molecular configuration of an amino acid is levo un-
less otherwise specified, and for amide derivatives of as-
partic or glutamic acid, COOH in position 1 is implied if
not specified. Both one-letter and three-letter designations
of amino acids are used. N-free 4-nitro-aniline derivatives
of L-amino acids contained A-NA (alanine-4-nitroanilide),
C-bis-NA (cysteine-), E-NA (glutamic acid-), -E-NA
(gamma-glutamic acid-), F-NA (phenylalanine-), G-NA
(Glycine-), K-NA (lysine-), L-NA (leucine-), M-NA (me-
thionine-), P-NA (proline-), R-NA (arginine-), and V-NA
(valine-); A-A-NA, E-F-NA, and G-P-NA; A-A-A-NA and
A-A-F-NA; and A-A-V-A-NA. N-free -naphthylamine
derivatives of amino acids contained A-Nap (alanine beta-
naphthylamide), A-4-methoxy-Nap, D-Nap (aspartic
acid-), E-(4-methoxy)-Nap, F-Nap, G-Nap, H-Nap
(histidine-), I-Nap (isoleucine-), K-Nap, L-Nap, DL-M-
Nap, N-Nap (asparagine-), P-Nap, Pyr-Nap (pyruvic
acid-), R-Nap, S-Nap (serine-), V-Nap, W-Nap
(tryptophan-), and Y-Nap (tyrosine-). N-blocked hippuric
acid derivatives of amino acids included Hip-F, Hip-K, and
Hip-R; and Hip-G-G, Hip-G-K, and Hip-H-L. N-blocked
4-nitro-aniline derivatives of L-amino acids contained
Ace-A-NA, CBz-F-NA, CP-F-NA, Ace-L-NA, Ben-R-
NA, and Ace-Y-NA. N-blocked B-naphthylamine
derivatives of L-amino acids contained Ben-C-Nap, Ben-
F-Nap, CBz-F-Nap, Formyl-M-Nap, CBz-P-Nap, and Ben-
R-Nap; and Succinyl-F-G-L-Nap.

Plant Material

Garlic (Allium sativum L.) was purchased in a local
market. Garlic bulbs were placed in 1-2 cm water in petri
dishes and germinated in an incubator at 30°C in dark-
ness. Germinated bulbs were removed from the incubator
for preparation of crude extract 30 days after imbibition,
when the length of the shoots reached about 2-3 cm.

Preparation of Crude Extract

The garlic was homogenized in liquid nitrogen. Ten-
millimolar phosphate buffer (pH 7.8) containing 1%
polyvinylpyrrolidone, 1% ascorbic acid, | mM potassium
chloride, 10 mM magnesium chloride, and 50 mM EDTA
was added in the ratio of 1/3 (gram fresh weight/ml of ex-
traction buffer). After centrifugation at 12,000 g for 20 min
at 4°C, the supernatant liquid was collected (crude extract)
and immediately subjected to assays of protease activities.

Assays of Protease Activities

Proteinase assays using casein or hemoglobin as sub-
strate were performed according to to the method of
Bergmeyer (1984).

Protease assays for each synthetic substrate were car-
ried out at three pHs: 3.4 (glycine-HCI buffer), 7.0 (phos-

bot 363- 07. p65 190

Botanical Bulletin of Academia Sinica, Vol. 36, 1995

phate buffer), and 8.9 (Tris-HCI buffer). Each synthetic
substrate was dissolved in N,N-dimethylformamide as
stock solution and diluted with double-distilled water be-
fore use. Crude extracts were diluted with double-distilled
water to about 0.25 mg protein per ml as enzyme sources.
Each micro-plate contained 270 pL of the reaction mix-
ture, which consisted of 20 mM buffer, 2.5 mM substrate,
and crude extract containing about 30 g protein. The en-
zyme reaction was started by adding 120 pL of the crude
extract to a mixture of buffer and substrate solution, and
was carried out at 37°C for 50, 100, and 150 min. Absor-
bance at zero time was used as the blank value for each
corresponding assay.

The hydrolysis of aminoacyl-4-nitroanilide was mea-
sured spectrophotometrically at 410 nm as reported
(Erlanger et al., 1961, 1966). The hydrolysis of aminoacyl-
[B-naphthylamide was measured at 540 nm (Erlanger et al.,
1966). The endopeptidase activity was determined with
casein (Kunitz, 1946) or hemoglobin (Bergmeyer, 1984)
as substrate. The enzymatic reaction was performed and
determined by assays of aminopeptidase activity except
that reactions were carried out at only at pH 7.5.

Boiled enzyme solutions were used as controls for the
above enzymatic reactions. All enzymatic reactions were
performed three times. One enzyme unit was defined as
the amount of enzyme required to hydrolyze 1 pmol of
substrate per hour under the assay conditions. All enzyme
activities were expressed on the basis of unit per g fresh
weight or unit per mg protein.

Determinations of Water-Soluble Protein

Protein determinations were performed by the method
of Lowry et al. (1951), with bovine serum albumin as the
standard.

Results

Endopeptidase Activities

Figure 1 shows endopeptidase activities of garlic bulbs
before and after germination, using casein or hemoglobin
as a substrate. With casein as the substrate, garlic bulbs
had lower activity levels before germination than after. The
opposite was observed with hemoglobin as the substrate.

Time Course of Gly-Na Hydrolyzing Activity

Figure 2 shows time course of Gly-Na hydrolyzing ac-
tivity at pH 7.0 of germinated garlic bulbs. The increase
of absorbance at 410 nm is linear within 150 min.

Aminopeptidase and Some Endopeptidase Activi-
ties

Figures 3 and 4 show amino peptidase and some en-
dopeptidase activities of garlic bulbs before germination
using 4-nitroaniline and [3-naphthylamine derivatives of
amino acids and peptides as substrates at pH 3.4, 7.0, and
8.9 on the basis of g fresh weight and mg protein. When
4-nitroanilides were used, Ala-Ala-Phe-Na was hydrolyzed
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Figure 1. Proteinase activity of garlic bulbs. Garlic bulbs 30
days after imbibition were used as germinated materials. Pro-
teinase assays using casein or hemoglobin as substrate were done
according to Bergmeyer (1984).
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Figure 3. Amino peptidase and some endopeptidase activities
of dormant garlic bulbs expressed as units per g fresh weight.
The hydrolysis of aminoacyl-4-nitroanilide was measured spec-
trophotometrically at 410 nm by the method of Erlanger et al.
(1961, 1966). The hydrolysis of aminoacyl-3-naphthylamide was
measured at 540 nm (Erlanger et al., 1966). The endopeptidase
activity was determined with casein (Kunitz, 1946) and hemo-
globin (Bergmeyer, 1984) as substrates. The enzymatic reaction
was performed and determined by assays of aminopeptidase ac-
tivity, except that reactions were carried out only at pH 7.5.
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Figure 2. Time course of Gly-hydrolyzing activity of garlic
bulbs. Garlic bulbs 30 days after imbibition were used as ger-
minated materials. Protease assays for Gly-4-nitroaniline were
carried out at pH 7.0 (phosphate buffer). Crude extracts were
diluted with double-distilled water to about 0.25 mg protein per
ml as enzyme sources. Each micro plate contained 270 UL of
the reaction mixture that consisted of 20 mM buffer, 2.5mM sub-
strate, and crude extract with about 30 pg protein. This enzyme
reaction was started by adding 120 UL of the crude extract to a
mixture of buffer and substrate solution and carried out at 37°C
for various times. Absorbance at 405 nm of zero time was used
as the blank value for each corresponding assay.
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Figure 4. Amino peptidase and some endopeptidase activities
of dormant garlic bulbs expressed as units per mg protein. De-
tails are the same as in Figure 3.
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most rapidly at pH 3.4. Ala-Ala-Ala-Na and Ala-Ala-Phe-
Na were hydrolyzed most rapidly at pH 7.0. Gly-Na, Ala-
Na, and Met-Na were hydrolyzed most rapidly at pH 8.9.
When B-naphthylamine derivatives were used, Lys-Nap
and Arg-Nap were hydrolyzed most rapidly at pH 3.4,
while Lys-Nap, Trp-Nap, and Arg-Nap were hydrolyzed
most rapidly at pH 7.0. Ala-Nap, Trp-Nap, and Lys-Nap
were hydrolyzed most rapidly at pH 8.9.

Figures 5 and 6 show amino peptidase and some en-
dopeptidase activities of garlic bulbs after germination
using 4-nitroaniline and B-naphthylamine derivatives of
amino acids and peptidases as substrates at pH 3.4, 7.0,
and 8.9 on the basis of g fresh weight and mg protein.
When 4-nitroanilides were used, Ala-Ala-Ala-Na, Gly-
Nap, and Ben-Arg-Nap were hydrolyzed most rapidly at
pH 3.4. This was not observed before germination. Gly-
Na was hydrolyzed most rapidly at pH 7.0—the rate was
more than four times that before germination. When (-
naphthylamine derivatives were used, Tyr-Nap, Ben-Phe-
Nap, Ser-Nap, and Cbz-Phe-Nap were hydrolyzed most
rapidly at pH 3.4. Trp-Nap, Tyr-Nap, Phe-Nap, Arg-Nap,
and Pro-Nap were the five leading substrates at pH 7.0
and 8.9.

Discussion

Although onion (Allium cepa L.) and garlic (Allium
sativum L.) belong to the same genus, their protease ac-
tivity patterns are not the same. The casein-hydrolyzing
activity of garlic bulbs was higher after germination than
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Figure 5. Amino peptidase and some endopeptidase activities
of germinated garlic bulbs (30 days after imbibition) expressed
as units per g fresh weight. Details are the same as in Figure 3.
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Figure 6. Amino peptidase and some endopeptidase activities
of germinated garlic bulbs (30 days after imbibition) expressed
as units per mg protein. Details are the same as in Figure 3.

before germination (Figure 1), while the opposite was ob-
served in onion bulbs (Lin and Yao, 1995). The level of
casein-hydrolyzing activity of garlic is only about 1/3 and
1/2 that of onion before and after germination, respectively,
based on enzyme units per g fresh weight . Hemoglobin-
hydrolyzing activity of garlic bulbs is lower after germi-
nation than before germination, as it is for onion. Dormant
garlic has only 60% of hemoglobin-hydrolyzing activity
of dormant onion, based on enzyme unit per g fresh
weight.

The activity of a neutral aminopeptidase hydrolyzing
Leu-4-nitroanilide at pH 7.0 has been reported to decrease
during germination (Feller, 1979). Collier and Murray
(1977) have found that the maximum activity of Leu-f3-
naphthylamidase in germinating pea cotyledon was only
half that found in developing cotyledon. The activities of
the naphthylamidases (hydrolyzing Leu-B-naphthylamide
at pH 6.4) were high in the cotyledons of resting seeds,
but decreased during germination (Mikkonen, 1986). Our
results are similar; we found that hemoglobin-hydrolyz-
ing activity (Figure 1), or some aminopeptidase (Figures
3,4, 5, and 6) activities of dormant garlic bulbs are higher
than those of germinated ones. It is possible that these en-
zymes catalyze the protein turnover needed for the high
rate of protein biosynthesis in developing bulbs, rather than
ensure a high net rate of protein breakdown during ger-
mination.

Enzyme activity hydrolyzing Ben-Arg-Na at pH 3.4 was
not observed before germination. Those hydrolyzing Ben-
Phe-Nap and Cbz-Phe-Nap rapidly at pH 3.4 were found
only after germination. Those hydrolyzing Tyr-Nap and
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Ser-Nap at pH 3.4, and Trp-Nap, Tyr-Nap, and Pro-Nap
at pH 7.0 and 8.9 increased after germination. This is also
the characteristic of germinating garlic bulbs. These en-
zyme activities may be responsible for breakdown of stor-
age proteins during germination.

Although some developmental patterns occur in some
seed tissues, marked differences in the changing proteo-
lytic enzyme activities can still be found in different or-
gans within the same seedling or among different plant
tissues, as evidenced by the results of studies comparing
pea radicles to pea cotyledons (Crump and Murray, 1979)
and by this work. The activities of proteinases (acting on
hemoglobin at pH 3.7 and on casein at pH 5.4 and 7.0)
were low in resting seeds, but increased during germina-
tion and reached their maximum values when the mobili-
zation of nitrogen was highest (Mikkonen, 1986). Our
results with hemoglobin as a substrate show the opposite
patterns (Figures 1 and 2). The activities of the
naphthylamidases (hydrolyzing Leu-b-naphthylamide at
pH 6.4) were high in the cotyledons of resting seeds, but
decreased during germination (Mikkonen, 1986). Our re-
sults show that the changing patterns depend on which
substrate is used (Figures 3, 4, 5, and 6).

Garlic enzymes hydrolyze derivatives of 4-nitroaniline
and SB-naphthylamine of amino acids and peptides differ-
ently at different pHs. The same was observed in onion.
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