The Systematic Study of Taiwanese *Arisaema* (Araceae)

Jenn-Che Wang

Department of Biology, National Taiwan Normal University, Wenshan, Taipei, Taiwan 11718, Republic of China

(Received August 11, 1995; Accepted November 14, 1995)

Abstract. The genus *Arisaema* (Araceae) in Taiwan is revised based on comparative morphological, palynological, and cytotaxonomical studies. Nine species and one variety, including two new taxa (*A. ilanense* J. C. Wang sp. nov. and *A. thunbergii* ssp. *autunnale* J. C. Wang, J. Murata & Ohashi sp. nov.), are recognized. By the re-collection of fresh materials and a detailed comparison, *A. matsudai* Hayata, which was previously reduced to synonymy under *A. grappospadix* Hayata, is now treated as distinct. Rhizome shape, arrangement of leaflets, ratio of pseudostem to petiole length, and spadix-appendage morphology are all important characters in separating the Taiwanese taxa. Pollen morphology also displays interspecific variation in size, spine length, and spine density. Cytologically, all examined species have 28 chromosomes (diploid), but three of them are also found to have 56 chromosomes (tetraploid). The chromosome numbers 2n=28 of *A. ilanense* and *A. thunbergii* ssp. *autunnale*, and 2n=56 of *A. formosanum* and *A. heterophyllum* are determined for the first time. A key to the taxa along with descriptions, illustrations, distribution maps, and taxonomic notes are provided.

Keywords: Araceae; *Arisaema*; Chromosome number; Pollen; Systematics; Taiwan.

Introduction

The genus *Arisaema* consists of about 150 species (Murata, 1990a) with the center of distribution and differentiation in warm to cool temperate regions of Asia (Li, 1980; Murata, 1984). The genus was first established by Martius in 1831 based on the Himalayan species (Murata, 1990a). The most important early monograph was by Engler (1920), who divided the genus into 15 sections based predominantly on the floral morphology. His system was later revised by Hara (1971), who emphasized the arrangement of leaflets rather than floral morphology and rearranged the Himalayan species into 13 sections. Hara’s system was adopted by Li (1979) in her study of the Chinese species. Recently, Murata (1984) re-examined the characters which were used in the previous studies, and with special reference to fresh materials, he found many new taxonomic characters. Based on extensive studies—including gross morphology, chromosome numbers, and pollen morphology—he proposed a revised system (Murata, 1984, emend 1991) in which the genus was divided into 11 sections.

The Taiwanese *Arisaema* have been studied by few taxonomists. Most species hitherto known were described by Hayata (1915, 1916, 1920), Hosokawa (1936), and Kitamura (1941). The first revision of the Taiwanese species was by Huang (1960), who recognized five species and two forms. His treatment was adopted with little modification by Liu & Huang (1978) in the Flora of Taiwan, first edition. Subsequently, four taxa, viz. *A. formosanum* var. *bicolorfolium* Huang, *A. taiwanense* J. Murata, *A. taiwanense* var. *brevipedunculatum* J. Murata and *A. thunbergii* ssp. *urashima* (Hara) Ohashi & J. Murata, have been reported from Taiwan (Huang, 1982; Murata, 1985; Wang, 1992).

In the present paper an intensive revision is made based on comparative morphological, palynological, and cytological studies. As a result, nine species and one variety, including two new taxa, are recognized in Taiwan. All of these taxa are classified into five sections based on the system proposed by Murata (1984, 1991).

Materials and Methods

Materials used in the present study were collected from the field throughout Taiwan. Most material was pressed and dried for voucher specimens deposited in the Herbarium, Department of Biology, National Taiwan Normal University (TNU). Voucher specimens for pollen observation and chromosome counts were also deposited in TNU. Living material for the study was cultivated in the shade house of the Department of Biology, National Taiwan Normal University. In addition, specimens preserved in the following herbaria were examined: HAST: Herbarium, Institute of Botany, Academia Sinica, Taipei; PPI: Herbarium, Department of Forest Resource Management and Technology, National Pingtung Polytechnic Institute; TAI: Herbarium, Department of Botany, National Taiwan University; TAI: Herbarium, Taiwan Forestry Research Institute; TNU: Herbarium, Department of Biology, National Taiwan Normal University.

Although most type specimens were unavailable, photographs of type specimens preserved in the Herbarium of Tokyo University (TI) (Ohashi, 1981) were examined by the author.

Pollen grains for scanning electron microscopic (SEM) study were collected from fresh anthers and prepared by the method proposed by Erdtman (1952). The acetylated grains were dehydrated through ethanol series and
acetone, critical point dried, coated with gold, and exam-
ined under an ABT DS-180S scanning electron micro-
scope in the Department of Biology, National Taiwan
Normal University.

Root tips for chromosome counts were cut from living
plants. After being pretreated with 0.05% colchicine for
3-5 hours, the material was fixed in a mixture of absolute
alcohol and glacial acetic acid (3:1/v:v), then macerated
with 0.5% pectinase, stained with aceto-carmine, squashed,
and observed under a Leitz Aristoplan microscope.

Taxonomic Characters

Previous studies (Engler, 1920; Hara, 1971; Li, 1979)
have shown that the arrangement of leaflets, shape of the
spathe and spadix-appendage, sterile flowers, and dehis-
cence pattern of anthers were important characters for the
taxonomy of this genus. Moreover, Murata (1984) inten-
sively examined living plants and proposed some new
taxonomic characters such as the growth pattern of the
stem, position of the foliage leaves, phyllotaxy, etc. Huang
(1960) critically revised the characters used for the tax-
onomy of the Taiwan species. He also described in detail
the infraspecific variation of characters. The taxonomic
characters used for the present study are concisely de-
scribed in the following categories:

Stem

The stem of Arisaema is can be either an abbreviated
subterranean tuber or rhizome. The former occurs in all
the Taiwanese taxa except A. grapsospadix. These tubers
are characterized by a more or less depressed globose
shape with a whorl of roots growing at the top around the
pseudostem. As a rule, this kind of stem forms an ab-
scission layer at the base of the new stem and separates
the old stem of the previous year (Murata, 1984). Plants
with tubers often are deciduous and mainly found in the
temperate regions. Taxa with a rhizome have a stem that
is more or less cylindrical in shape with somewhat scat-
tered roots growing on the upper part. Plants with rhi-
zomes are evergreen and mainly found in the tropics. In
Taiwan, the rhizome type stem is uniquely found in A.
grapsospadix and can be used to easily distinguish it from
a similar species, A. matsudai Hayata, which has the tu-
ber type stem.

Leaves

The plants of Arisaema bear two kinds of leaves on
the top of the stem, the outer cataphyll (a sheath-like leaf)
and the inner foliage leaf. The basal part of the petiole
forms a sheath-like pseudostem encircled the peduncle.
The foliage leaves display a wide variation in the number,
arrangement, and shape of leaflets. Most Taiwanese spe-
cies produce one or two foliage leaves except A. grapsospadix,
which may produce up to three leaves. In some species the number of foliage leaves is rather stable.
For example, A. thunbergii ssp. autumnale and A.
heterephyllum always produce a single foliage leaf while
A. ilanense and A. ringens always produce two. However,
in species belonging to Arisaema sections Fimbriata and
Sinarisalma, the number of foliage leaves is unstable. In
these species, as Huang (1960) pointed out, female plants
usually have two leaves and males only one.

The arrangement of leaflets is an important character in
identifying species or species groups. Among Taiwan-
ese species, three patterns of leaflets arrangement can be
recognized, namely trifoliolate, radiate, and pedate com-
ound (Figure 1). These patterns are distinguished not
only by the number of leaflets but also the presence or
absence of petiolules.

Trifoliolate (Figure 1A): Leaves comprise three leaflets,
but sometimes pedate five leaflets in A. grapsospadix. The
leaflets in A. ringens are sessile (Figure 1A) but those of
A. matsudai and A. grapsospadix are petiolulate.

Radiate (Figure 1B): Each leaf comprises more than
seven leaflets which are sessile or subsessile. Also, the
rachis between leaflets is undeveloped so that the leaflets
are palmately arranged (Figure 1B). Species of this type
all belongs to Arisaema section Sinarisalma.

Pedate: Leaves have more than seven leaflets, except
for A. grapsospadix which is 5-foliolate but is character-
ized by having well-developed rachis. A. grapsospadix,
A. ilanense and Arisaema section Tortuos (A. thunbergii
ssp. autumnale and A. heterophyllum) belong to this type.
The leaves of A. grapsospadix are characterized by 5-
foliate and having a long petiolule on the middle leaf-
et (Figure 1C). The other three species have more than 7
leaflets in which the middle one is sessile or nearly so.
Among the three taxa, the size of middle leaflet is an im-
portant character for identification. In some species (A.
ilanense and A. thunbergii ssp. autumnale, Figure 1E) the
middle leaflet is larger or as large as the adjacent lateral
ones, or much shorter than the adjacent lateral ones in
other species (A. heterophyllum, Figure 1D).

Inflorescence

The inflorescence of Arisaema is a spadix enveloped
by a foliaceous spathe. The upper part of the inflorescence-
axis, called the spadix-appendage, is often covered with
modified sterile flowers (projections). The morphology of
the inflorescence, including spathe, spadix, and spadix-
appendage, has the most important characters in the tax-
onomy of the genus and has been used to discriminate
between infrageneric groups (Engler, 1920; Murata,
1984).

Spathe—The shape and coloration of the spathe varies
greatly between species. Basically, the lower part of spathe
forms a cylindrical tube with overlapping spathe-margins
called the spathe-tube which usually gradually opens to
the mouth. The mouth of the spathe-tube often widely
spreads outward with an auricle on each side. In some
species, namely A. grapsospadix, A. matsudai, and A.
heterephyllum, the mouth of the spathe-tube spreads very
narrowly, rendering the auricles inconspicuous. By con-
trast, in A. ringens the auricles are particularly
obvious.
The upper part of the spathe is laminar and is called the spathe-blade, which often arches over the spadix-appendage. In general, the spathe-blade is triangular or triangular-ovate with an aristate tip, but some species have a distinctive feature. For example, the spathe-blade tip of *A. taiwannense* is thread-like and up to 40 cm long; the spathe-blade base of *A. heterophyllum* enlarges into an auricle on each side. The spathe-blade of *A. ringens* is firstly concave then convex and forms a galeate structure which is unique to the Taiwanese species.

Coloration of the spathe provides an obvious character, although it is variable in some taxa especially those of *Arisaema* section *Sinarisaea*. For example, in *A. consanguineum* and *A. formosanum* variously colored spathes, from green to red, are found in different individuals. The most conspicuous feature is the white semilunar mottling on the spathe throat of *A. grapsospadix* and *A. matsudai*. This feature is sometimes found in *A. formosanum*, but it is not so obvious and is somewhat irregular (Figure 3B). In *A. grapsospadix*, *A. matsudai*, and *A. heterophyllum* both surfaces of the spathe are green and concolorous. In *A. ilanense*, the outer surface is pale to greenish yellow while the inner is reddish brown to dark purple. In *A. thunbergii* ssp. *autunnale* (Figure 2C), *A. ringens* (Figure 3D), and the species of *Arisaema* section *Sinarisaea* (Figures 3A-C), the inner surface of spathe is longitudinally striped, though those of the *Arisaema* section *Sinarisaea* are not always stable as mentioned above.

Pistillate flowers—The pistillate flowers of the genus consist of an unilocular ovary which contains one to several orthotropous ovules. The structure is so simple that previous taxonomists have not considered it important. Hosokawa (1936) proposed *A. taihokense* which is separated from *A. ringens* by having more ovules per ovary. However, Huang (1960) pointed out that the ovule number in this taxa ranged from two to six and was not a constant character. Therefore, he reduced *A. taihokense* to synonymy under *A. ringens*. The ovary (i.e. pistillate flower) is usually ovoid and perpendicular to the inflorescence-axis except that of *A. grapsospadix* which is bottle-shaped and slanting.

Sterile flowers—The spadix (especially female) of most Taiwanese *Arisaema* bears some projections above the fertile flowers (Figures 2, 3). These are considered to be modified sterile flowers (Engler, 1920; Hara, 1971) because a rudimentary reproductive structure (e.g. ovule or anther-like organ) is occasionally found (Murata, 1984). I have also observed that *A. heterophyllum* bears an anther on the top of some projection. In Taiwan, the modified sterile flowers are found on the spadix of almost all species except *A. thunbergii* ssp. *autumnale* and *A. ringens* (Figure 3D). Among the species in Taiwan, two patterns of modified sterile flowers are recognized. The first type, found in *A. grapsospadix* and *A. matsudai*, bears baccate modified sterile flowers at the top of spadix-appendage. The second type, found in most other species, bears echinate sterile flowers just above the fertile flowers, i.e. at the base of spadix-appendage. The former sometimes also have linear sterile flowers at the base of the spadix-appendage (especially on the female spadix of *A. matsudai*) just like the latter pattern (Figure 2A).

Spadix appendage—Morphology of the spadix-appendage is also greatly diversified (Figures 2, 3) and has been considered to be important in discriminating species and infrageneric groups (Li, 1979; Murata, 1984). The spadix-appendage can be divided into sessile and stipitate types. In the most Taiwanese taxa, the basal part gradually narrows or enlarges, so the appendage is sessile (Figures 2, 3A & 3B). In *A. ringens* and some individuals of *A. taiwannense* the basal part suddenly constricts and forms a stalk, so the appendage is stipitate (Figures 3C & 3D).

For most species in Taiwan, the spadix-appendage is erect, cylindrical, and included in the spathe; but in *A. heterophyllum* and *A. thunbergii* ssp. *autumnale*, the spadix-appendage gradually narrows to form a flagellate tip which is long-exerted from the spathe (Figures 2B, 2C). In *A. taiwannense*, the appendage tip is distinguished by its rugose surface, an important identifying character. A key based on the characters of the spadix-appendage is given below to distinguish each taxa in Taiwan.

![Figure 1. Leaflets arrangement of Arisaema in Taiwan. A, A. ringens; B, A. formosanum; C, A. grapsospadix; D, A. heterophyllum; E, A. thunbergii ssp. autumnale.](image)
Figure 2. Inflorescences of *Arisaema* in Taiwan. A. *A. matsudai*, male; B. *A. sinatense*, male; C. *A. thunbergii* ssp. *autumnale*, male; D. *A. ilanense*, female.
Figure 3. Inflorescences of *Arisaema* in Taiwan (cont.). A, *A. consanguineum*, female; B, *A. formosanum*, female (left) and male (right); C, *A. taiwanense*, female (left) and male (right); D, *A. ringens*, female.
of Spadix-Appendage

1. Spadix-appendage filiform, long-exerted from the spathe.

2. Spadix-appendage black, upper part bent forward and pendulous (Figure 2C) A. thunbergii ssp. autumale

3. A. heterophyllum

1. Spadix-appendage short-cylindrical or filiform, included in the spathe.

3. Spadix-appendage tip slender, less than 1.5 mm in diameter

4. Spadix-appendage tip smooth, without modified sterile flowers A. formosanum

4. Spadix-appendage tip with baccate or linear sterile flowers.

5. Spadix-appendage tip usually with baccate sterile flowers, base with linear sterile flowers in mature (female) plant A. matsuadai

5. Spadix-appendage tip usually with linear sterile flowers, base glabrous

................................. A. grapsospadix

3. Spadix-appendage tip thick, more than 3 mm in diameter

6. Spadix-appendage tip rugose (Figure 3C) A. taiwanense

6. Spadix-appendage tip smooth

7. Spadix-appendage stipitate at the base (Figure 3D) A. taiwanense

7. Spadix-appendage sessile at the base

8. Spadix-appendage erect, cylindrical (Figure 3A) A. consanguineum

8. Spadix-appendage incurved, clavate (Figure 2D) A. ilanense

Pollen

Huang (1972) briefly described pollen morphology of five Taiwanese species, and illustrated three of them, based on optical microscopic observation. Ohashi & Murata (1980) and Ohashi, Murata, & Takahashi (1983) reported palynological differences among Japanese species and suggested that pollen morphology might be useful in distinguishing between Japanese species. Moreover, Murata (1984) observed 24 species of Arisaema outside Japan, of which three are present in Taiwan, and pointed out considerable variation between species in pollen size, pollen shape, size and density of the pollen spines, and pollen surface structure.

Pollen grains of Arisaema are generally spherical, inaperturate, intactcate, echinate or spinulate (Murata, 1984). In the present study, pollen grains of eight taxa in Taiwan were examined with SEM (Figures 4 & 5). In general, the results were consistent with the above description. Pollen grains ranged in size from 12µm (in A. consanguineum, Table 1) to 21µm (in A. thunbergii ssp. autumale) in diameter. The surface of grains is uniformly distributed with conical or echinate spines. The length and the density of spines seem distinct for each species (Table 1). Generally the spine density is lower in larger grains. Therefore, the large grains of A. thunbergii ssp. autumale have low spine density (2.4 spines in an area 5iN5µm) while the small grains of A. consanguineum have high density (9.8 spines in an area 5iN5 µm). However, A. taiwanense has large grains (18.2 µm) but the highest spine density (15 spines in an area 5iN5 µm). Furthermore, the new species A. ilanense is palynologically unique (Figures 4, C & D) in having the rather large grain (18.6 µm), with the shortest spines (0.4-0.5 µm) and low spine density (5.2 spines in an area 5iN5 µm) on the surface among the taxa examined in Taiwan. A. thunbergii ssp. autumale was previously misidentified as A. thunbergii ssp. urashima by Japan by Wang (1992), but when compared with Ohashi & Murata (1980), the grains of A. thunbergii ssp. autumale are slightly different from those of A. thunbergii ssp. urashima. The pollen grains of A. thunbergii ssp.

Table 1. Pollen grains of Arisaema in Taiwan.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Diameter (µm)</th>
<th>Spine length (µm)</th>
<th>Spines in area 5×5 µm</th>
<th>Voucher specimen</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. sect. Fimbriata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. grapsospadix</td>
<td>15.0</td>
<td>1.2–1.7</td>
<td>6.7</td>
<td>Wang 7079</td>
<td>4-A, B</td>
</tr>
<tr>
<td>A. sect. Clavata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. ilanense</td>
<td>18.6</td>
<td>0.4–0.5</td>
<td>5.2</td>
<td>Wang 6705</td>
<td>4-C, D</td>
</tr>
<tr>
<td>A. sect. Tortosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thunbergii ssp. autumale</td>
<td>20.9</td>
<td>1.0–1.2</td>
<td>2.4</td>
<td>Lu & Horng 1361</td>
<td>4-G, H</td>
</tr>
<tr>
<td>A. heterophyllum</td>
<td>14.2</td>
<td>0.7–1.1</td>
<td>11.1</td>
<td>Wang 6741</td>
<td>4-E, F</td>
</tr>
<tr>
<td>A. sect. Sinarisaema</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. consanguineum</td>
<td>12.1</td>
<td>0.6–0.8</td>
<td>9.8</td>
<td>Deng 354</td>
<td>5-A, B</td>
</tr>
<tr>
<td>A. formosanum</td>
<td>12.7</td>
<td>0.9–1.2</td>
<td>9.6</td>
<td>Wang 7081</td>
<td>5-C, D</td>
</tr>
<tr>
<td>A. taiwanense</td>
<td>18.2</td>
<td>0.8–1.0</td>
<td>15.0</td>
<td>Deng 355</td>
<td>5-E, F</td>
</tr>
<tr>
<td>A. sect. Pedatisecta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. ringens</td>
<td>16.7</td>
<td>0.7–1.0</td>
<td>4.9</td>
<td>Wang 6455</td>
<td>5-G, H</td>
</tr>
</tbody>
</table>
Figure 5. Pollen grains of *Arisaema* in Taiwan (cont.). A & B, *A. consanguineum* (Deng 354); C & D, *A. formosanum* (Wang et al. 7081); E & F, *A. taiwanense* (Deng 355); G & H, *A. ringens* (Wang 6455). Scale bars equal 5 µm.
autumnale have shorter spines (1–1.3 μm) with a somewhat obtuse apex (Figure 4H) while those of A. thunbergii ssp. urashima have longer spines (1.7–1.9 μm) with an acute apex.

On the whole, our knowledge concerning the palynology, especially of the infraspecific variation, is still incomplete. A broad comparative study would be necessary to confirm and clarify the above observations.

Chromosome Numbers

All the Taiwanese taxa, except A. ilanense, A. matsudai and A. thunbergii ssp. autumnale, have been examined cytologically by Huang (1962), Hotta (1971), and Murata (1985, 1990b). These previous studies show that nearly all the species have the chromosome numbers of 2n=28. However, some species were reported to have infraspecific heteroploidy (Murata, 1990b). For example, A. consanguineum was reported to have diploid (2n=28) and tetraploid (2n=56); A. heterophyllum was reported to have diploid and hexaploid (2n=84) (Murata, 1990b).

The present study re-examined all the Taiwanese taxa, except A. matsudai. The preliminary results were consistent with the previous studies. All examined species have 2n=28 chromosomes (diploid), but 2n=56 (tetraploid) was also found in A. consanguineum, A. formosanum and A. heterophyllum. The chromosome numbers 2n=28 of A. ilanense and A. thunbergii ssp. autumnale, and 2n=56 of A. formosanum and A. heterophyllum are determined for the first time. The cytological study is still in progress and will be published elsewhere.

Systematic Treatment

ARISAEMA Mart.

Terrestrial herbs. Stem subterranean, rhizomatous, or tuberous, bearing a peduncle, 1-3 foliage leaves, and several cataphylls at the top. Foliage leaves trifoliate, radiate, or pedate compound. Basal part of petiole of foliage leaf connate into a sheath-like pseudostem encircling the peduncle. Cataphyll sheath-like, surrounding the pseudostem and peduncle. Inflorescence forming a spadix enveloped by a foliaceous spathe. Lower part of spathe forming a cylindrical tube (spathe-tube), usually gradually opening to the mouth; upper part laminar (spathe-blade), usually hanging over the spadix-appendage. Upper part of the inflorescence-axis (spadix-appendage) various in morphology, naked or partly or entirely covered with modified sterile flowers (projections). Upper part of spadix-appendage elongate or not; basal part sessile or truncate to subtruncate and stipitate. Flowers unisexual, without perianth, tightly arranged on lower part of inflorescence-axis, paradoecious or in some species monoeccious. Staminate flowers consisting of two to several anthers growing on a columnar stalk. Pistillate flowers consisting of a unilocular ovary. Ovules orthotropous, one to many in each locule. Fruit a berry, one to several-seeded.

Key to the Taxa of Taiwanese Arisaema

1. Leaves trifoliolate or pedately 5-foliolate
2. Spadix-appendage filiform, sessile, with baccate or linear sterile flowers at the tip (Arisaema sect. Fimbriata)
3. Subterranean stem rhizomatous; plant evergreen1. A. grapsospadix
4. Subterranean stem tuberous; plant deciduous ...2. A. matsudai
5. Spadix-appendage cylindrical conical, stipitate, without modified sterile flowers (A. sect. Pedatisecta).................................9. A. ringens
6. Spathe green; spadix-appendage erect; pseudostem and peduncle longer than petiole; terminal leaflet much shorter than the adjacent lateral ones (A. subsect. Flagellarisaea).........................4. A. thunbergii ssp. autumnale
7. Spathe green; spadix-appendage erect; pseudostem and peduncle longer than petiole; terminal leaflet much shorter than the adjacent lateral ones (A. subsect. Tortuosa).................................5. A. heterophyllum
8. Leaves radiate compound (A. sect. Sinarisaema)
9. Peduncle 5-15 cm long, spathe tube 3.8-5.5 cm long, limb 5-7 cm long........8. A. taiwanense
10. Peduncle 1-5 cm long, spathe tube 2-4 cm long, limb 3-5 cm long...........8a. A. taiwanense var. brevipedunculatum

Figure 9

Stem rhizomatous, oblong-ovoid, 3-5 cm long, 1.5-2.2 cm in diameter. Pseudostem 13-25 cm long, usually longer than petiole. Leaves two or three; petiole terete, 5-15 cm long; lamina ternate or pedately 5-foliolate; leaflets acute to acuminate at apex, often mucronate on the tip, round to cuneate at base, entire or near so on margin; terminal leaflet elliptic to lanceolate, petiolule 1-2.5 cm long; lateral leaflets lanceolate to oblong, oblute at base, petiolule 3-10 mm long. Peduncle 3-13 cm long. Spath greenish on both surfaces with a semilunar white mottle in throat; tube cylindrical, (3-4-6 cm long, 1-1.7 cm in diameter; limb triangular ovate, 1.5-2 cm wide, acute to apex. Spadix bisexual in mature plants, unisexual (male) in small plants, 5-9 cm long including appendage; staminate flowers sparsely arranged on the inflorescence-axis, short stalked to nearly sessile; pistillate flowers ovoid, ascending; appendage filiform, erect or bent, with a bottle brush-like tip.

Specimens examined. NANTOU: Chitou, 1924, Siematsu s. n. (TAIF); Fenghuangshan, Peng & Chen 10524 (HAST); Luku Hsiang: Hsiou Exp’t Forest of NTU, Peng 15016 (HAST). YUNLIN: Tsaoling, Shihpi, Wang 13865 (HAST). CHIAYI: Alishan highway 18-66K, Wang 10253 (HAST); Dardunshan, Wang et al. 7079 (TNU), Yang 468 (TNU). KAOHSIUNG: Tengchou, Ohashi et al. 13041 (TAI). PINGTUNG: Chachayalaishan, Yang 20090 (TNU); Chunhji Hsiang: Chachayalaishan protection area, Liao et al. 220 (HAST); Chuapu to Linchang, Province Road No.9, 471.5K, Wang 16972 (HAST); Chiaoguolats, Wang et al. 7426 (HAST, TNU); Daibuzan (Mt. Tawushan), Soma A229 (TAI); Lilungshan, Yang 8382, 3449 (PP); Manchou to Chufengku, Wang 7394 (HAST); Mutan, Chang 4786, 5717 (PP); Peitaotawan, Yang et al. 9090 (TNU); on the way to Tawushan, Chen et al. 335 (HAST); Pu-an-shan, Wang 19038 (HAST); Shantimen to Chihpen, Province Road No. 22, 59-61K, Wang 13702 (HAST); Shihizu Hsiang: Lilungshan, Chen & Leu 837, 850 (HAST); Shoka, Wang 13470 (HAST); Wantao to Nanzenshan, Yang et al. 4326 (TAI); Nanjenshan, Ohashi et al. 14579 (TAI), Lu & Chen 1407 (TNU), Wang & Lu 5568 (TNU), Chius s. n. 1993 (TNU); Kuwarusu, Matuda 448 (TAI), A335 (TAI).

Distribution. Endemic to Taiwan, in the southern part from low to medium altitudes (Figure 6).

Notes. The species is characterized by its evergreen habit, rhizomatous subterranean stem, slanting ovary, bottle brush-like spadix-appendage, and white semilunar mottle on the throat of the spathe-blade. The first three characters are very unique and useful in identifying this taxa. The last two are shared with A. matsudai, and their distinctions are discussed below. Its foliage leaves are rather variable, from trifoliolate to pedately 5-foliolate (A. quinquefoliolium Hayata), with both sometimes found in the same individual.

Tuber subglobose, 1-2(-3) cm in diameter. Pseudostem 8-25(-30) cm long, usually longer than the petiole. Cataphyllstwo or three, membranous. Leavesone or two;
petiole terete, 6-12 cm long; lamina trifoliolate, leaflets acute to acuminate at apex, often with a short tail on tip, entire or near so on margin; terminal leaflet ovate-lanceolate to rhomboid-elliptic, cuneate at base, petiolule 0.6-1.5 cm long; lateral leaflets obliquely ovate to lanceolate, oblique at base, petiolule 2-4 mm long or sometimes near sessile. Peduncle 4-10 cm long, often shorter than petiole. Spathe greenish on both surfaces with a semilunar white mottle on the throat; tube cylindrical, 2.5-3.5 cm long, 0.6-1 cm in diameter; limb triangular ovate, 1-1.5 cm wide, acute at apex. Spadix paradoicous, female in mature plants, male in small plants, 3-4.5 cm long including appendage; staminate flowers short stalked, anthers 2; pistillate flowers ellipsoid, perpendicular to the inflorescence-axis; appendage filiform, erect or bent, with linear projections at the base (in female spadix) and baccate ones at the tip.

Specimens examined. CHIAYI: Tsengwen reservoir, Pinglin Yentzyuai, Wang 11008 (HAST). KAOHSIUNG: Shanping, Summer collecting team s.n. 1986 (TNU), Wang et al. 9552, 9687 (TNU), Chen 526 (HAST); PINGTUNG: Kuwarusu, Matuda 447 (TAI).

Distribution. Endemic to the low altitudinal mountainous region of southern part of Taiwan (Figure 6).

Notes. A. matsuclai Hayata was originally described based on an incomplete (lacking subtaneous stem) male plant (Type: Matsuda s.n. 1917, TI photo!). Most taxonomists (e.g. Kitamura, 1941; Huang, 1960; Liu & Huang, 1978) thought it synonymous with A. grapsospadix Hayata because both taxa share many aspects such as trifoliolate leaves, a greenish spathe with a semilunar white mottle on the throat, and the filiform appendage. However, after comparing numerous fresh, complete, and matured collections in detail, A. matsuclai can be distinguished easily from A. grapsospadix in having a deciduous habit, a subglobose subtaneous stem, a unisexual spadix in the mature plant, many linear sterile flowers born above the fertile flowers in the female spadix, and pistillate flowers perpendicular to the inflorescence-axis, etc.

A. matsuclai is also similar to A. inclusum N. E. Brown in Java, but may be distinguished by having baccate sterile flowers at the spadix-appendage tip. The species probably also resembles A. penicillatum N. E. Brown of southern China, and A. laminatum Blume of Malay...
Figure 9. *Arisaema grapsospadix* Hayata. 1 & 2, Habit and rhizome; 3, Leaf; 4, Male spadix; 5, Female spadix; 6, Male flowers; 7, Female flower; 8, Longitudinal section of ovary showing ovules. (Wang et al. 9090)
Figure 10. *Arisaema matsudai* Hayata. 1 & 2, Habit and tuber; 3, Leaf; 4, Male spadix with spathe; 5, Female spadix; 6, Male flowers; 7, Female flower; 8, Longitudinal section of ovary showing ovules. (*Wang et al. 9552*)
Figure 11. *Arisaema ilanense* J. C. Wang sp. nov. 1, Habit; 2, Spadix with spathe; 3, Male spadix; 4, Female spadix; 5, Male flowers; 6, Female flower; 7, Ovules. (Wang et al. 6705)
Archipelago. An intensive study is necessary to clarify their classification.

3. Arisaema ilanense J. C. Wang, sp. nov. (Figure 11)

Tuber depressed-globose, 1.5-3 cm in diameter. Pseudostem 10-30 cm long, deeply subterranean. Cataphyll three or four, fleshy, whitish to greenish, apex mucronate. Leaves two; petiole terete, 10-22 cm long; lamina pedate, leaflets 7-15, sessile, oblanceolate to elliptic, cuneate at base, acuminate at apex, the terminal one 10-22 cm long, 2-4.5 cm wide, longer than or equal to the adjacent one. Peduncle 1.5-7 cm long, usually much shorter than the petiole. Spathe pale to greenish yellow outside, dark purple inside; tube cylindrical, slightly auriculate at the mouth, 6-9 cm long, 1.3-2 cm in diameter, pale to greenish yellow outside, dark purple inside and gradually paled to reddish brown downward; blade ovate, 6-10 cm long, 3-5 cm wide, acute or sometimes acuminate to the apex. Spadix 1.5-2.4 cm long in male, 1.5-3.4 cm long in female, appendage clavate, 9-15 cm long, slightly exerted, upper portion dark purple to black, bent outward or slightly downward, lower portion reddish, gradually narrowed toward the floriferous part or sometimes stipitate at the base with some echinate projections.

Specimens examined. ILAN: Ssuoyuan to Nanshan, Wang et al. 6705 (holotype TNU, isotypes HAST, TAI, TNU, TUS); same loc., Wang et al. 8145 (TNU)

Distribution. endemic to northern Taiwan at medium altitude from 1600 to 1900 m (Figure 6).

Notes. Arisaema sect. Clavata comprises seven species distributed in Japan and China (Murata, 1984). The section is characterized by having petate foliolate leaves with many sessile leaflets and a sessile spadix-appendage with modified sterile flowers (Murata, 1984). Among those species belonging the section, A. ilanense closely resembles A. du-bois-reymondiae Engl in China and A. heteroccephalum Koidz. in the Ryukyu Islands, but A. ilanense also somewhat resembles A. negishii Makino of Japan and A. hunanense Hand.-Mazt. of mainland China. The former two have an clavate or cylindrical spadix-appendages which are rather short and often included in the spathe; whereas the latter two have an elongate spadix-appendage with a somewhat slender tip. A. ilanense has a characteristic clavate spadix-appendage which is longer than those of A. du-bois-reymondiae and A. heteroccephalum, but is not as elongated as those of A. negishii and A. hunanense (Ohashi, pers. comm.).

A. ilanense was only found in Ssuoyuan, northern Taiwan. This region forms a saddle between the Central Mountain Range and the Hsuehshan Mountain Range, and is also the source of the Lanyanghsi River. The habitat is cool and moist. Thousands of individuals grow on the forest floor under broad-leaved trees. A. taiwainense occurs at the same locality, but their flowering season seems different. A. ilanense flowers from February to late March while A. taiwainense flowers from late March to May. The two species are possibly isolated by the flowering season.

4. Arisaema thunbergii ssp. autnnaele J. C. Wang, J. Murata & Ohashi, sp. nov. (Figure 12)

Tuber depressed-globose, 3-6 cm in diameter. Pseudostem 5-15 cm long, much shorter than the petiole. Cataphylls membranous, purplish to brownish, apex mucronate. Leaf solitary; petiole terete, 20-55 cm long; lamina pedate; leaflets 11-15, oblanceolate to elliptic, cuneate at base, acuminate at apex, the terminal one 10-28 cm long, 2-7.5 cm wide. Peduncle 10-20 cm long, usually shorter than petiole. Spathe white to pale yellow with dark to bronze-purple or reddish purple stripes; tube cylindrical, auriculate at the mouth, 5-7 cm long, 2-2.5 cm wide, white to pale yellow with longitudinal purple stripes outside and dark purple stripes inside; blade triangular ovate, 7-10 cm long, 4-5 cm wide, acute to acuminate at apex. Spadix 3-4 cm long in male, appendage filiform, 40-60 cm long, long-extended, upper portion bent downward and pendulous, lower portion gradually thickened to form a smooth long cylindrical enlargement then gradually narrowed toward floriferous part.

Specimens examined. TAIPEI: Yun-sen Waterfall, Wang et al. 9035 (TNU); Sanhsia, Hsiung-kung to Man-yue-yuan, on the floor of broadleaf forest, Wang, Sang & C. H. Chen 9460 (type, HAST, TNU); Province Road No. 7, Chihtuuan to 67.5K, Wang 11504 (HAST). ILAN: Fushan Botanical Garden, 1992, Yang s. n. (TNU); Nanao
Figure 12. *Arisaema thunbergii* ssp. *autumnale* J. C. Wang, J. Murata & Ohashi ssp. nov., 1 & 2, Habit and tuber; 3, Spadix with spathe; 4, Apex of cataphyll; 5, Male spadix; 6, Male flower from the upper part of spadix, front view and side view; 7, Male flower from the lower part of spadix, side and front view. (Wang 67474)
Hsiang; en route from Shenmihu control station to Shenmihu, Liu et al. 147 (HAST, TNU). HUALIEN: Lanshan, Peng 9922 (HAST); Taroko National Park, en route from Yueluwang to Yehai Forest Trail, Peng et al. 12990 (HAST); Walami, Lu & Horng 1361 (TNU); Yehai logging tract, Wang 6747A (TNU), Wang et al. 7640 (TNU).

Distribution. Endemic to Taiwan, widespread but scarce at low altitudes of northern and eastern parts (Figure 7).

Notes. The taxon was recently found in northern and eastern Taiwan and previously misidentified as *Arisaema thunbergii* ssp. urashima of Japan (Wang, 1992). The gross morphology of the Taiwan plants is closely similar with those from Japan. However, by a detailed comparison, the Taiwanese taxon is different from that in Japan in the pollen morphology, flowering season, and shape and color of spathe. The palynological differences were described as above. The flowering season was considered to be important by Murata (1984), who used it as one character in discriminating the *Arisaema* section Decipentia. However, the flowering time may not be so important in the Taiwanese *Arisaema* because they flower one after another all year long, probably due to the warmer climate. However, the flowering season of *A. thunbergii* ssp. *autunmale* is quite different from that of *A. thunbergii* ssp. *urashima*, the former is exclusively in the autumn (from October to November) while the latter is in the spring (from April to May, Ohwi 1965). Lastly, *A. thunbergii* ssp. *autunmale* is distinct from *A. thunbergii* ssp. *urashima* by the less expanded spathe-limb, and in having distinctly longitudinal striation on the both surfaces of spathe-blade as well as the inner surface of spathe-tube. Therefore, it is reasonable to treat them as distinct.

Tuber depressed-globose, 1-6 cm in diameter. Pseudostem 25-60 cm long, much longer than petiole. Leaf solitary; petiole 5-15 cm long; lamina pedate; leaflets 11-19, narrowly elliptic to oblanceolate, cuneate at base, acuminate at apex, short-petiolate to sessile; terminal leaflet 4-15 cm long, 1-3.5 cm wide, much shorter than adjacent leaflets. Peduncle 15-22 cm long, longer than the petiole. Spatha green on both sides; tube cylindrical, not or slightly auriculate at the mouth, 4-10 cm long 1-2 cm in diameter; limb ovate or ovato-lanceolate, 5-11 cm long, 3-5 cm wide, acuminate at apex. Spadix mostly dioecious, 2.5-3.5 cm long in male, 4-5 cm long in female; appendage filiform, 15-25 cm long, erect, bent outward at tube mouth and then turned upward and long-exerted, basal part with few echinate sterile flower or not.

Specimens examined. KEELUNG: Dandan, 1944, *Masamune s. n.* (TAI); TAIPEI: Agyokusana, 1934, *Suzuki s. n.* (TAI); Chingtienkang to Tsutsueku, Wang 5284 (TNU), 3332 (HAST, TNU); Chunghsing Farm, Lu 57 (TNU); Ertuping, Wang et al. 9205 (TNU); Hsiaokoutou, Huang & Jeng 10823 (TAI); Hsintien: en route from Hualin to mt.-hiking entrance of Tungshan, Liu et al. 204 (HAST); Hualin to Tungshan, Liu et al. 204 (TNU); Kungliao Hsiang: Chaohui Temple, near Yenliao, Peng et al. 14965 (HAST); Peichatien, Huang 412 (TNU); Tungshan, Deng 928 (TNU); Tutanhsun to Chingho, Hsu 5561 (TAI); Shihkulia, Yang 1253 (TNU); Shinsn, Chang 1561 (TAI); MIAOLI: Hsiaoping, Hsu 932 (TAI); Hsiu Hsiang Public Cemetery, Peng et al. 13953 (HAST). ILAN: Mt. Oobi, 1938, *Masamune s. n.* (TAI); Nanao Hsiang: Chihyang Village, Shenmihu, Chen et al. 675 (HAST); Nan-ao to Hoping, Wang 6741 (TNU); Tanorei, Suzuki 7401 (TAI); Taipingshan, Suzuki 174 (TAI); Shenmieu Huang et al. 5204 (TAI); HUALIEN: Taroko National Park: Tsankuang Temple to a mt. ridge above the destroyed Eternal Spring Temple, Peng et al. 12307 (HAST); Tenshsian, Huang 9319 (TAI); Yehai logging tract, Wang 6747 (TNU); Yueluwang to Yehai logging tract, Wang et al. 7670 (TNU).

Distribution. China, Korea, and Japan. Taiwan, in the northern parts at low altitude (Figure 6).

Figure 13. *Arisaema heterophyllum* Blume. 1 & 2, Habit and tuber; 3, Spadix with spathe; 4, Male spadix; 5, Male flowers; 6, Female flower, upper one showing longitudinal section and inner ovules. (1993, Huang s.n.)
Figure 14. Arisaema consanguineum Schott. 1 & 2, Habit and tuber; 3, Leaflet; 4, Male spadix; 5, Female spadix; 6, Male flowers; 7, Female flower; 8, Longitudinal section of ovary showing inner ovules. (Chen & Hung IIII)

Arisaema consanguineum var. _kelung-insularis_ (Hayata) Huang, Taiwania 7: 102, fig. 7. 1960; Liu & Huang, Quart. J. Taiwan Mus. 16: 132. 1963.

Arisaema biradiatfoliatum Kitamura, Acta Phytotax.
Takao, Daikwanzan, 14 May 1939, _Okamoto_ s.n. (holotype: KYO? n. v.)

Arisaema erubescens auct. non Schott: Li in Wu & Li,

Tuber depressed globose, 2-7 cm in diameter. Pseudostem 30-80 cm long, white to pale green, sometimes mottled with purple-brown marks. Cataphylls three or four, greenish or reddish, sometimes with purple-brown marks. Leaf solitary or two; petiole 15-40 cm long, distinctly shorter than the pseudostem; lamina radiately 9-15-foliolate; leaflets narrowly elliptic to elliptic, 12-25 cm long, 1-6 cm wide, apex acuminate, base cuneate, green above, glaucous beneath. Peduncle 6-12-(15)cm long, distinctly shorter than the petiole. Spathe green or red with white lines along veins on the outer surface; tube cylindrical, auriculate at the mouth, 5-8.5 cm long, 1-2 cm in diameter, greenish to yellowish green, sometimes with purplish red stripes on inner surface; blade triangular ovate, 4-8 cm long, 2-4 cm wide, white, green or purplish red, often with pale veins on inner surface, long acuminate, sometimes with a prolonged filiform tail at apex. Spadix 6-10 cm long including appendage; appendage clasping, erect, 4-7 cm long, tip more than 2 mm thick, base with fine bristly projections usually abundant in the female spadix but scarce in the male; Infructescence recurved downward.

Specimens examined. TAIPEI: Chishingshan, Yang 1368 (TAI), Tang 1249 (TAI); Chungshih Farm, Lu 53, 59 (TN); Kabozan, Fukuyama ST19241 (TAI); Tsaooshankou, near Chinkunshih, Peng & Chen 10867 (HAST). TAOUYN: Lalashan, 6th group 32 (TAI); Parlin to Lalashan, Cheng 8 (TAI). MIAOLI: Kawanu, Huang 4751 (TAI); same loc., along the trail to the “Sacred Tree”, Peng et al. 14910 (HAST); 2 km of Kuanwu, Peng et al. 14936 (HAST); Kuanwu to Chutung, Wang et al. 9288 (HAST, TNU); Loshan to Kawanu, Wang & Yang 7427 (TNU). HSINCHU: Chienhsiang Hsiang: Yuanyanghu Natural Reserved Area, Shen et al 739 (HAST), Wang & Hsu 1311 (HAST), Wang et al. 1055 (HAST); Wufeng Hsiang: Kuanwu, Tulu forest road 20-26K, Wang et al. 9218, 9221 (HAST, TNU); same loc., east branch line 7-10K, Wang et al. 9258 (HAST, TNU), 92584 (TNU). TAICHUNG: Anmashan, Huang 8070, 8116, 8120 (TAI); Chihyuanshanchuan, Tang 1251 (TAI); Nanhuhsi-Tochiatunshan-710 track road, Wang et al. 3848 (TAI); Pilushn 11th watershed, Wang 3096 (TAI).

NANTOU: Dandar logging tract, 1993, Yang s.n. (TN); en route from Tungpu Hot Spring to Kuankao, Peng 8024 (HAST); Kuanyung to Yuanfeng, Wang 5093 (TAI); Meifeng, 1993, Yang s.n. (TN), Peng 8334 (HAST); Hsinyi District: Shenn Forest Trail, Peng & Chen 11403 (HAST); Tsuifeng to Meifeng, Tateishi et al. 17554 (TAI); Yushan National Park: en route from Lulin Lodge to Tachiai Saddle, Peng & Chen 11457 (HAST); Wushe to Chicheng, Feung & Kao 4540 (TAI), CHIAYI: Alishan, Huang 1765 (TAI), 1991, Chang s.n. (TNU), Tateishi et al. 17806 (TAI); Alishan, Erhwanping, Tateishi et al. 17920 (TAI); Alishan to Erhwanping, Wang 6378 (TN); En route to Yushan, Huang et al. 14221, 14231, 14422 (TAI), Tatka, Wang et al. 5483 (TN). KAOHSIUNG: Chinchung Bridge, Wang 10397 (HAST); Taoyuan Hsiang: Tiencih, Wang et al. 1152 (HAST), Wang 10393 (HAST), Tashulinshan, 1919, Matsuda s.n. (TAIF). ILAN: Taipingshan, Suzuki 187 (TAI), 1918, Sasaki s.n. (TAIF).

Distribution. Northern India, Nepal, Sikkin, Burma, northern Thailand, and mainland China. Taiwan, from low to medium altitudes throughout the island (Figure 7).

7. _Arisaema formosanum_ (Hayata) Hayata, Icon. Pl. Form. 5: 243, fig. 87. 1915 (“formosana”); Huang, J. Forest NTU 27: 6, fig. 6, 7. 1960; Huang, Taiwania 7: 102, fig. 1, 3, 4. 1960; Liu & Huang, Quart. J. Taiwan Mus. 16: 133. 1963; Liu & Huang in H. L. Li et al., Fl. Taiwan 5: 803, pl. 1527. 1978; Li in Wu & Li, Fl. Reipubl. Popularis Sin. 13(2): 187. 1979. (Figure 15)

Arisaema formosanum var. _bicolorifolium_ Huang, Taiwania 27: 30, fig. 1, pl. 1-5. 1982 (“bicolorifolia”), —TYPE: Taiwan. Mt. Tiger, Huang 8698 (holotype: TAI) syn. nov.

Arisaema oblanceolatum Kitamura, Acta Phytotax.
Figure 15. Arisaema formosanum (Hayata) Hayata. 1 & 2, Habit and tuber; 3, Leaflet; 4, Male spadix; 5, Female spadix; 6, Male flowers; 7, Female flower. (Wang et al. 9220)
Tuber depressed globose, 1.5-4.5 cm in diameter. Pseudostem 10-60 cm long, white to pale green, sometimes mottled with purple-brown marks. Cataphyllsthree or four, greenish or reddish, sometimes with purple-brown marks. Leaf solitary, rare two; petiole 12-30 cm long, about equal or shorter than the pseudostem; lamina radiately 7-11-(15)-foliolate; leaflets narrowly elliptic to elliptic, 10-30 cm long, 0.8-7.5 cm wide, apex acuminate, base cuneate, green above, glaucous beneath. Peduncle 4-10-(15) cm long, distinctly shorter than petiole. Spathe green to reddish green, with white lines along veins, on the outer surface; tube cylindrical, auriculate at the mouth, 4-6 cm long, 1-1.8 cm in diameter, greenish to yellowish green, sometimes with purplish red stripes on inner surface; blade ovate, 4-7 cm long, 2.3-5 cm wide, green to purplish red, often with pale veins on inner surface, long acuminate with a prolonged filiform tail at the apex. Spadix 5-8 cm long including appendage; appendage filiform, (2)-3-4 cm long, less than 1.5 mm wide, base with fine bristly projections usually abundant in the female spadix but scarce in the male; Infressculese recurved downward.

Specimens examined. TAIPEI: Chunghsing Farm, Lu 58 (TNU); Erhztuping, Wang et al. 9206 (TNU); Tszutzuru, Nakamura 4354 (TAI); HSIENCHU: Chienish Hsiang: Yuanyanghu Natural Preserved Area, Shen et al. 585 (HAST). MIAOLI: Hushan, Huang 8695 (TAI); Taian Hsiang: Malapangshan, Liu et al. 93 (HAST); TAICHUNG: Anmashan, Huang 8118, 8119 (TAI); Pilushi 11th watershed, Wang 3095 (TAI); Shuanshan, 1983, Lin & Hsieh s.n. (TAIF); Wuling, en route from Wuling Farm to Chikashanchuang, Hsu & Moore 633 (HAST). NANTOU: Chitou, Lu 603 (HAST, TNU), Wang 15362 (HAST), Chuang & Kao 3174 (HAST); Chitou tract, Huang 1401, 1440 (TAI); Fenghuangshan, Peng & Chen 10517 (HAST); Hoshie tract, Huang 2187 (TAI); Hsinyi Hsiang: from Patungkuan to Tungpu, Chen 988 (HAST); Patungkuan, Huang 1585 (TNU); Tsuifen, Hu 1550 (HAST); Tungpu to Kuanko, Huang 18959 (TNU); Tunyuan to Yunhai, Liao et al. 1289 (TNU); CHIAI: Alishan, 1911, Kawakami & Sasaki s.n. (TAIF), Huang 1667, 1668, 1706 (TAI), Chann 5458 (TAI); Alishan to Erhwanping, Wang et al. 6379 (TAI); Alishan to Tzushan, Wang et al. 6428 (TAI); Chuchi Hsiang: Shihoho, Lungyunshanchuang, Wang et al. 725 (HAST); Erhwanping, 1914, Hayata s.n. (TAIF); Fenchihu, Huang & Huang 13978 (TAI), Huang 2602 (TAI); Fenchihu to Dardungshan, Wang et al. 7080, 7081 (TNU); Fenchihu to Tienchian, Wang et al. 6251 (TNU); Monlu cliff to Tungpu, Hsu 5389 (TAI); Mt. Morrison, Chuang et al. 4033 (HAST); Niitakayama & Morii 2330 (TAIF); KOHSIUNG: Tengji, Wang et al. 7482 (TAI); Tienchu to Yikou, Southern E-W Highway, Huang et al. 8859 (TAI); PINGTUNG: Peitawushan, Wang et al. 9166 (TNU); ILAN: Chilingtong Ridge, Huang 7793, 7852 (TAI); Nanao Hsiang: Chinyang Nanao broad-leaved forest preserve, Peng et al. 13796 (HAST); Chinyang: border of Shenmihu Lake in "Nanao broad-leaved forest preserve", Peng et al. 13814 (HAST); Taipeingshan, Huang et al. 10792, 10807 (TAI); Yuanyang Lake, Wang 9292 (TNU); HUALIEN: Chingsuishan, 1983, Chiou & Ho s.n. (TAIF); Ful Hsiang: Hsinkangshan, Shen et al. 650 (HAST); Mt. Tarokotaizan, Suzuki 10926 (TAI); Topoko, 1983, Chiou & Lin s.n. (TAIF); Taroko National Park: Yenhai Forest Trail, Peng et al. 12367 (HAST); Yenhai logging tract, Wang et al. 6794 (HAST, TNU), Wang et al. 7667 (HAST, TNU); Yuehwaingten to Yenhai logging tract, Wang et al. 7639 (TNU); Yuli Wildlife Nature Reserve, Deng 4332 (TNU); TAITUNG: Sinsuei, 1932, Sasaki s.n. (TAI), Suzuki ST8027 (TAI); Southern cross island highway 155K, Hsiangyang to Liyuan, Wang 14204 (HAST).

Distribution. Endemic to Taiwan, from low to medium altitudes throughout the island (Figure 7).

Notes. A. consanguineum and A. formosanum are very similar in morphology as well as habit. The two species often occur in the same locality (see Figure 7). Their typical forms are easily distinguished by the thickness of the spadix-appendage tip, the only character distinguishing them. In general, the former has a thicker spadix-appendage (typically more than 3 mm in diameter) while the later has a slender one (typically less than 1.5 mm in diameter). However, both taxa show great variation in plant size, leaf shape, spathe color, and the thickness of spadix-appendage tip, all of which result in some infraspecific taxa. Also, some intermediate plants with 2-3 mm thick spadix-appendage tips were occasionally found. Murata (1985) pointed out that these species may be isolated seasonally and/or geographically. However, their flowering season changes continuously from species to species. During the transition period, hybridization, which may confuse the delimitation of species, possibly occurs. In this situation, any nomenclatural change and infraspecific classification await an extensive comparative study of both species.

Tuber depressed globose, 2-6 cm in diameter. Pseudostem 2-30 cm long, white to pale green, usually motted with purple-brown marks. Cataphylls greenish or reddish, often with purple-brown marks. Leaf solitary; petiole 10-40 cm long, usually longer than the pseudostem; lamina radiately 7-15-foliolate; leaflets obovulate, apex filiform-caudate, with a thread-like pendulous tail at tip, green above, glaucous beneath. Peduncle 5-15 cm long, distinctly shorter than the petiole. Spathe purplish red to dark purple, with fine green dots between veins on outer surface; tube obconical, gradually opening to the auriculate mouth, 2-6 cm long, 4-8 cm wide, white to pale yellowish green with purple stripes on inner surface; blade ovate to broadly ovate, 3-8 cm
Figure 16. *Arisaema taiwanense* J. Murata. 1 & 2, Habit and tuber; 3, Leaflet; 4, Male spadix; 5, Female spadix; 6, Male flowers; 7, Female flower. (Wang et al. 9377)
long, 4-8 cm wide, dark purple, scarcely with pale veins on inner surface, acute to acuminate with a prolonged filiform tail up to 40 cm long at apex. Spadix 3-10 cm long including appendage; appendage stipitate or sometimes sessile, thick cylindrical, 2-5 cm long, 0.5-1.5 cm wide, apex slightly enlarged, strongly to weakly rugose, base narrower, with fine bristly projections, usually abundantly in the female spadix but scarce in the male; Infructescence recurved downward.

Specimens examined. TAOYUAN: Lalashan, 1990, Chiang s.n. (TAI); HSINCHU: 8.7 km N of Kuanwu, Peng et al. 14937 (HAST). TAICHUNG: Anmashan, Huang 8114, 8115 (TAI); Chihyuanshanchuang, Tang 1250 (TAI); Heping Hsiang: Lishan, Ho 328 (HAST); same loc., Hsu 3849 (TAI); Pilushi 11th watershed, Wang 3095 (TNU); NANTOU: Chiti, near Chitou, 1968, Hsu s.n. (TAI); Jiuyench, Lu et al. 1450 (TNU); CHIAI: Alishan, 1914, Hayata s.n. (TAI), 1924, Ishizaki s.n. (S), Wang 2303 (TAI), 1957, Chuan & Kao s.n. (TAI); Alishan highway, Shihcho, Tinghuti-Tadungshan-Furungshan, Wang 18495 (HAST); Alishan to Erhweoping, Tateishi et al. 17901 (TAI); Chichung, Wang et al. 5406 (TNU); Erhweoping, Murata 17248 (isotype of A. taiwanez J. Murata, TAI); Erhweoping to Shinnun, Murata & Huang 17667 (TAI); Fenchihu to Dardungshan, Wang et al. 7082 (HAST, TNU); KAHOHSING: Tengchih, Huang et al. 13849, 13850 (TAI); ILAN: Ssuyuan Yakou, Yang & Hsieh 4070 (TAI); Ssuyuan to Nanshan, Lu 70 (HAST, TNU), 71, 224 (TNU); Taipingshan (Taiheizan), Lin et al. 23 (TNU), Suzuki 187 (TAI); Taipingshan, around Taipingshanchuang, Lin et al. 23 (HAST).

Distribution. Endemic to Taiwan, throughout the island at medium altitudes, common (Figure 8).

Pseudostem 2-10 cm long, greenish, without colored marks. Cataphylls greenish pale brown, without colored marks. Peduncle 1-5 cm long. Spatha tube 2-4 cm long, 3.5-6 cm wide; spath-blade concave and arched, 3-5 cm long not including a thread-like tail. Spadix-appendage 2-4 cm long, 0.5-1.2 cm wide.

Specimens examined. PINGTUNG: Peitawushan, Kuaikushanchuang - the base, Murata 17252 (isotype of *A. taiwanez* var. *brevipedunculatum* J. Murata, TAI), Tateishi et al. 19562, 19564 (TAI); HUALIEN: Yuli Wild-life Nature Reserve, Deng 444-1, 444-3 (TNU).

Distribution. Endemic to Taiwan, at medium altitudes of southern and eastern parts (Figure 8).

Tuber depressed globose, 2-5 cm in diameter. Pseudostem 4-30 cm long, white to pale green or sometimes brownish pale green. Cataphylls greenish to purplish. Leavestwo; petiole 10-35 cm long, usually longer or equal to pseudostem; lamina trifoliolate; terminal leaflet ovate-lanceolate to rhomboid-elliptic; lateral leaflets obliquely ovate to lanceolate, apex filiform-caudate, usually with a thread-like tail at tip, green above, glaucous beneath. Peduncle 3-6 cm long, distinctly shorter than petiole. Spatha yellowish green to green; tube cylindrical, gradually opening to an auriculate mouth, 3-5.5 cm long, 1-2 cm in diameter, yellowish green to green on outer surface, purplish red with white to pale yellow green striations on inner surface; blade concave and revolute, saccate, caudate at the apex. Spadix 3-8 cm long including appendage; appendage white, 2-6 cm long including a short stalk of 3-10 mm long, attenuate, base truncate, apex obtuse, without modified sterile flower. Infructescence erect.

Specimens examined. KEELUNG: Campus of National Taiwan Coll. Marine Science and Technology, Peng 6361 (HAST); Chingjenhu, Liao et al. 1116 (HAST); Hopingtao, Lu 604 (TNU); Insl. Keelung, Masamune et al. 42 (TAI); Keelung, 1913, Sasaki s.n. (TAIF), Kou & Kao 4509 (TAI); TAIPEI: Chihnakung, Hoshanyueh, Wang 15307 (HAST); Chihshing to Erhtzuping, Lin et al. 78 (TNU); Chinsan, 1993, Wang s.n. (TNU), Lu 511, 512 (TNU); Chungsing Farm Huang 13454, 13455 (TAI), Lu 55, 56, 61, 62, 68 (TNU); en route from Hsintien to Pinglin, Leu & Yang 24 (HAST); Homei, Meiynienshan, Huang & Huang 13974 (TAI); Hsiakoutou, Huang & Jeng 10822 (TAI), 1991, Chen et al. s.n. (TNU), Ou 2 (TNU); Hsiakoutou to Shhtiing, Wang 5280 (TNU); Huangtitian, Kao 388, 389, 390 (TNU), Wang et al. 700 (HAST); Koko, Ohnuma s.n. 1934 (Holotype of *A. taitokense* Hosokawa, TAI); Kuanyinshan, 1915,
Figure 17. *Arisaema ringens* (Thunb.) Schott. 1, Habit and tuber; 2, Male spadix; 3, Female spadix; 4, Male flowers; 5, Female flower. (*Wang 6455*)
Shimada s.n. (TAIF), 1931, Mori s.n. (TAI), Huang 2007, 2015, 2355 (TAI), Fukuyama s.n. 1940 (TAI); Manyuyeuyuan, Wang 5675 (HAST, TNU); Maso (Wamli), Kawakami & Shimada 4348 (TAIF); Mt. Sitisei, Suzuki 3503 (TAI), Suzuki 6747 (TAI); Nankang: en route from Chunghua Inst. of Technology to Nakangshan, Peng & Chan 10425 (HAST); Nanpanliao, Huang 10453 (TAI); Pei-Highway, Huang 15930 (TAI); Pei-yi highway (Province Road No.9) 53,5K, Wang 13308, 13309, 15310 (HAST); Pichashan, Yang 1196 (TAI); Pihu, Tsou & Lin 652 (HAST); Pinglin Hsiang: Jenlapan, Peng et al. 10585 (HAST); Sabasong, 1914, Shimada s.n. (TAIF); Sandiaoling, Masamune 2643 (TAI); Shamaoshan, Chung 705 (PPP); Sekitei, Kawakami & Fuji 1914 (TAIF); Shantuchiao, 1934, Sasaki s.n. (TAI); Shihting Hsiang: Leikungpo, Hsiaokotoa, Peng & Hu 12286 (HAST); Sozan (Yaningshan), 1929, Suzuki s.n. (TAI), Hsu 5303 (TAI), Chuang & Lin 4809 (HAST); Tatanu, Hu 15216 (TAIF), Murata & Yang 17861 (TAI); Tsaoashan, Hsu 10403 (TAI); Wulai, Ruan 42 (HAST, TNU), 1972, Chang s.n. (TNU), 1981, Chen s.n. (PPP); Yamingshan National Park, Peng & Hsiao 10459 (HAST); Yamingshan National Park: on the way from Erhtzuoping to Hsiangtiencih, Chen et al. 431 (HAST, TNU); Yamingshan National Park: Tsutzuulu, Leu 387 (HAST); Yehliu, Wang et al. 7310 (TNU), Lu 599 (TNU); Yinhoutung, 1972, Chien s.n. (TNU), Wang 6453 (HAST, TNU); TAOYUAN: Lalashan Chen 13 (TAI); HSINCHU: Neiwan, 1916, Sasaki s.n. (TAIF), MAOLI: Shihlan, Peng et al. 13937 (HAST). ILAN: Insl. Kizan, 1932, Masamune & Suzuki s.n. (TAI); Nanao Hsiang: Wushihpi, Wang et al. 675 (HAST); Taipingshan, 1918, Sasaki s.n. (TAIF); Taipingshan to Tuchang, Suzuki 1140 (TAI); HUALIEN: Anlong, Kao 6147 (TAI); Dangi-Forrest, Taroko, Suzuki 9253, 9305 (TAI); TAITUNG: Is. Lanuy, 1935, Hosokawa s.n. (TAI), Chang 6158, 11481, 11482 (PPP), Yeh 768 (PPP); Is. Lanuy, Hungtoursan, Wang et al. 6100 (TNU), Chung 572 (PPP).

Distribution. Mainland China, south Korea, Japan, and the Ryukyu Islands. Taiwan, in northern part and Lanyu Is. at low altitudes (Figure 8).

Acknowledgments. I wish to express my gratitude to Dr. H. Ohashi, Professor of Tohoku University, and Dr. J. Murata, Tokyo Metropolitan University, for their critical reading of the manuscript, valuable comments and assistance in sending me useful literature, and also to Dr. D. H. Nicolson, Smithsonian Institution, Dr. B. Bartholomew, California Academy of Science, and Dr. C. I. Peng, Academia Sinica, for their critical reading of the manuscript and helpful suggestions for improvement. I am indebted to Mr. S. F. Huang, Herbarium of Department of Botany, National Taiwan University, for providing the “Catalogue of the type specimens preserved in TI”, and also to Ms. M. J. Deng and Y. C. Lu for their assistance in SEM photography. Mr. K. C. Yang of the Taiwan Forestry Research Institute, Dr. S. T. Chiu of the National Museum of Natural Science, Ms. M. F. Kao of the Department of Botany, National Taiwan University and Mr. W. H. Hu of the Institute of Botany, Academia Sinica kindly sent me living materials. Thanks are also due to the directors and curators of the herbaria for allowing me to examine the specimens. Last but not least, I am grateful to Dr. T. C. Huang, Professor of Department of Botany, National Taiwan University, for his encouragement. This work was supported in part by grant NSC79-0211-B003-02 and NSC83-0211-B003-007 from the National Science Council, ROC.

Literature Cited

Ohashi, H. 1981. Catalogue of the Type Specimens Preserved...
台灣天南星屬之分類研究

王震哲

國立台灣師範大學生物學系

天南星屬植物全世界共約有150種，主要分布於亞洲之熱帶及亞熱帶地區。台灣位於分布區之東緣，依據台灣植物誌之記載僅有六分類群，但近十年來陸續發現一些新紀錄及新種，顯示以往分類研究之不足，仍有深入調查之必要。本文針對台灣產天南星屬植物進行詳細之形態、花粉及染色體研究。依據研究結果將台灣地區之本屬植物區分為九種及一變種，其中包括新種－－宜蘭天南星（Arisaema tianense J. C. Wang）及－－新亞種－－東台天南星（A. thunbergii ssp. autumale J. C. Wang, J. Murata & Ohashi），另將以往併入毛筆天南星（A. grapsospadix Hayata）之線花南星（A. matsudai Hayata）處理為不同種。研究結果顯示地下莖類型、小葉排列方式、假莖與葉柄之相對長度以及花序頂端附屬物之形態為主要之分類特徵。花粉表面棘狀突起之長度及密度亦顯示有種間差異，可供分類參考。省產本屬植物之染色體測試花南星尚未測定，其餘均為2n=28（二倍體），但在羽葉天南星、長行天南星及台灣天南星等種類另發現有2n=56（四倍體）之種內異倍體（intraspecific heteroploidy）現象。本文並提供種之検索表，各種之描述、繪圖、地理分布及分類註釋。

關鍵詞：天南星科；天南星屬；染色體；花粉；台灣；植物分類。