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Abstract. Genetic variation in the intergenic spacer (IGS) of ribosomal DNA (rDNA) repetitive sequences in inter-
and intra-specific populations of Cogongrass [Imperata cylindrica (L.) Beauv. var. major (Nees) Hubb] in Taiwan,
was studied by employing PCR-amplified RFLP analysis. Each IGS region of 45 individuals from 15 populations
was amplified using a pair of complementary primers to conserved regions in the 5‘end of 17S and 3’end of 25S
rRNA genes. Five IGS length variants were found at 2,730 bp, 2,830 bp, 2,930 bp, 3,030 bp and 3,130 bp. Of
them, 2930 bp was the main type of IGS length of Cogongrass in Taiwan. Within an individual Cogongrass, one to
two IGS length types were distinguished. Those samples amplified by PCR were digested with 13 restriction enzymes,
and 283 bands were revealed. Of them, 248 bands were polymorphic. Clustering analysis was conducted based on
data obtained from bands distributed in all samples mentioned, and two major clusters were found. The Chuwei
population was distinctly different from the remaining populations. Moreover, the findings of the PCR-amplified
RFLP analysis also indicated that the IGS region of rDNA provides a good genetic marker and a potential tool for

the study of microevolutionary process.
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Introduction

Imperata cylindrica (Cogongrass), an aggressive rhi-
zomatous grass, is distributed widely in many parts of the
world from tropical to subtropical areas (Al-Juboory and
Hassawy, 1980). It can be spread both by seeds and rhi-
zomes (Wilcut et al., 1988). The light, thistle-like seeds of
Cogongrass are capable of being transported over great
distances, and this has probably contributed to increased
distribution. The seed production is rapid and well
adapted to new environments (Al-Juboory and Hassawy,
1980; Dickens, 1974). The plant exhibits a wide adaptabil-
ity to different climatic and environmental regimes but is
sensitive to salinity, leading to many ecotypes. Basic in-
formation on the taxonomy, physiological ecology, and
morphology of this grass is fairly extensive. Little was
known regarding the molecular ecology of the grass until
Cheng and Chou (1997) initiated a series of molecular stud-
ies by selecting six Cogongrass populations in Taiwan.
They (1997) concluded that the Chuwei (CW) population
located at the mouth of the Tamshui River has formed an
ecotype distinct from the remaining five populations in
other parts of Taiwan.
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In higher eukaryotes, ribosomal RNA genes (rDNAs)
are organized as families with repeated genes in tandem
arrays at the nucleolar organizer regions of chromosomes.
The copy number of repeated genes in rDNAs usually re-
veals from 100 to 1,000 copies per diploid cell in animals,
and from 500 to 40,000 copies per diploid cell in plants.
Each repeating unit usually consists of the transcribed re-
gion coding for 175, 5.8S and 25S rRNAs, which are highly
conserved among various organisms, and the intergenic
spacer (IGS) which is highly variable in length and primary
structure among organisms and individuals (Appels et al.,
1980; Waldron et al., 1983; Rogers and Bendich, 1987; Taira
et al., 1988; Kato et al., 1990; Perry and Palukaitis, 1990;
Beech and Strobeck, 1993; Borisjuk et al., 1994). The pri-
mary source of rDNA length variation is the number of
subrepeats within the IGS (Bhatia et al., 1996; Kaufman et
al., 1996). Therefore, sequence comparisons of rRNAs
genic regions were used to study phylogenetic relation-
ships among organisms (Schaal and Learn, 1988; Molina
et al., 1993) while the IGS region provided a good genetic
marker for the study of the microevolutionary process in
inter- and intra-specific populations (Schaal and Learn,
1988).

Recently, techniques such as restriction fragment
length polymorphism (RFLP) and random amplified poly-
morphic DNA (RAPD) have been widely used for genetic
diversity analysis (Torres et al., 1993). However, conven-
tional RFLP techniques involving southern blotting are
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laborious, time-consuming, and inadequate for large-scale
analysis (Halward et al., 1992; Williams et al., 1990). On
the other hand, RAPD techniques provide a powerful tool
to detect genetic variation in natural and man-made
populations. The technique requires only small amounts
of DNA, is simple, and costs less than other techniques
(Huff et al., 1993). Nevertheless, it has certain limitations,
including its sensitivity to reaction conditions and diffi-
culties surrounding the reproducibility of amplification
products (Hadrys et al., 1992; Schierwater and Ender, 1993).
Recently, the PCR technique has been increasingly applied
to problems in genetics, biomedical sciences, evolution-
ary biology, and ecology (Arnheim and Erlich, 1992). The
technique of PCR-amplified RFLP was initially introduced
to detect variations in the chloroplast gene rpoC,, C, re-
gion among 14 species of Astragalus (Fabaceae) (Liston,
1992). After that, several reports attempted to detect ge-
netic variation by PCR-amplified RFLP, but most of them
focused on detecting genetic variations of the chloroplast
DNA region in plants (Ghareyazie et al., 1995; Tsumura et
al., 1995, 1996; Lashermes et al., 1996; Ziegenhagen and
Fladung, 1997). In the present study, the technique was
employed to detect the variation in IGS of rDNA among
15 populations of Cogongrass in Taiwan.

Materials and Methods

Sites of Sampling

Fifteen sites—located at Fengshan (FS), Potzu (PZ),
Fengyuan (FY), Chuangwei (TW), Hualien (HL),
Chengkung (CK), Yehliu (YL), Sarlum (SL), Hoshe (HS),
Kengting (KT), Penghu (PH), Lutao (LT), Lanyu (LY),
Chuwei (CW), and Nankang (NK)—were selected for this
study (Figure 1). Characteristics of the habitats, includ-
ing soil texture, altitude, and weather conditions, were de-
scribed by Tsai (1994). The sites were chosen to be
representative of different habitats and climates in Taiwan.

Plant Materials

Rhizomes of Cogongrass collected from the 15 habitats
of Taiwan (Figure 1) were transplanted into pots which
were set in the greenhouse of the Institute of Botany,
Academia Sinica at Taipei, Taiwan. Environmental condi-
tions—such as the amount of water, soil type, humidity,
temperature, and light intensity—were under control.

Preparation of Total Cellular DNA

Total cellular DNA from the leaves of transplanted
Cogongrass was prepared by using an extraction tech-
nique modified from that of Shure et al. (1983). Three
grams of fresh leaves were harvested and ground to pow-
der with liquid nitrogen in a mortar and pestle, then trans-
ferred into a 30 ml centrifuge tube containing 10 ml of urea
buffer (8.0 M urea, 0.05 M NaCl, 0.05 M Tris-HCI pH 7.5,
0.02 M EDTA, 1% sarcosyl), preheated in 60°C water. We
mixed the sample thoroughly and incubated it in a water
bath at 60°C, inverting the tube constantly. We then, add-
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Figure 1. The sampling locations of . cylindrica in Taiwan. The
alphabes indicate that the samples were analyzed in the present
study. The abbreviations of sampling sites are: FS (Fengshan),
PZ (Potzu), FY (Fengyuan), TW (Chuangwei), HL (Hualien),
CK (Chengkung), YL (Yehliu), SL (Sarlum), HS (Hoshe), KT
(Kengting), PH (Penghu), LT (Lutao), LY (Lanyu), CW (Chuwei)
and NK (Nankang).

ed 10 ml phenol: chloroform (1:1, v/v) [Tris pH 8.0
saturated], inverting many times gently, and centrifuged
the tube at 10,000 rpm (Sigma 2K 15; Nr12139) for 10 min
at 4°C. We transferred the supernatant to a new centri-
fuge tube by filtering through two layers of miracloth, af-
ter adding 0.7 volume of 2-propanol and 1/10 volume 4.4
M NH,OAc. The tube was centrifuged at 10,000 rpm for
10 min at 4°C to collect precipitated DNA. The DNA pel-
let was resuspended with 5 ml TE (10 mM, Tris-HCI pH
8.0, 1 mM EDTA) and incubated with 50 pg DNase-free
RNase (Sigma) for 10 min at 65°C. The RNase and remain-
ing protein were extracted with an equal volume of phenol:
chloroform (1:1, v/v) [Tris pH 8.0 saturated] and centri-
fuged at 10,000 rpm for 10 min at 4°C. The supernatant
was transferred to a new tube. Then, the DNA was pre-
cipitated by the addition of a 1/10 volume 4.4 M NH,OAc
and three volumes of 95% ethanol. Precipitated DNA was
collected by centrifugation at 10,000 rpm for 10 min at 4°C,
washed with 70% ethanol twice, and dried before being
redissolved in 100-150 pl of TE (10 mM Tris-HCI pH 8.0, 1
mM EDTA). Approximate yield amounts were calculated
by a spectrophotometer (Beckman DU-20), and the DNA
samples were stored at -20°C.
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PCR Primers

Oligonucleotides used for PCR priming were designed
from conserved regions of the 5’end of the 17S rDNA se-
quence and the complementary sequence of the 3’end of
25S rDNA from previously described sequences (Takaiwa
et al., 1990; Kiss et al., 1989a; Kiss et al., 1989b;
Lakshmikumaran and Negi, 1994 ). Two primer sets for am-
plifying IGS of rDNA were designated as IG1: 5'-
CTACTGGCAGGATCAACCAGG-3"' and 1G2:
5’-TTGCTGCCACGATCCACTGAG-3".

PCR Amplification

PCR reaction was performed by using a 50 pl mixture,
containing 30 mM Tricine pH 8.4, 2 mM MgCl,, 0.01% BSA,
5 mM 2-mercaptoethanol and 0.1% Thesit, with four dNTPs
(0.8 mM each), primers (0.5 uM each), 2.5 units of 7ag DNA
polymerase (Promega) and 32 ng genomic DNA, and 50 pl
mineral oil (Ponce and Micol, 1992). Amplification reac-
tions were done in dry-block, two-step thermal cycles. In
the first step, the mixture was incubated at 94°C for 5 min,
followed by 10 cycles of denaturation at 94°C for 1 min,
annealing at 61°C for 1 min and extension at 72°C for 3
min. The second step was conducted as follows: 30 cycles
of denaturation at 94°C for 1 min, annealing at 56°C for 1
min and extension at 72°C for 3 min, followed by a final
extension for 10 min at 72°C. Those reaction samples were
detected by agarose gel electrophoresis of 10 pul of the PCR
products (0.8%, w/v in TAE), staining by 0.5 ug/ml of
ethidium bromide (EtBr), and photographing under the ex-
posure of UV light.

Restriction Enzyme Digestion

DNA fragments amplified by PCR were digested with
13 restriction enzymes, namely Haelll, Taql, Alul, Rsal,
Banl, Cfol, Mspl, BstOl, Eco01091, Hinfl, Styl, EcoRV and
Smal. All restriction enzymes digested were carried out
under the conditions recommended by manufacturers
(BRL or Promega), using 5-10 units of enzyme per micro-
gram (pg) of DNA, and incubating the reaction for 3 h to
overnight.

Gel Electrophoresis

About 5-10 pg of digested DNA mixed with tracking
dye [0.25% bromophenol blue, 40% (w/v) sucrose in water]
were electrophoresed overnight at 50 V-80 V in 2.5%-5.0%
NuSieve 3:1 agarose gels (FMC Bioproducts) with 0.5 pg/
ml EtBr. The pattern of bands was examined under UV
light.

DNA Labeling and Southern Hybridization

The DNA band on the gels was recovered by glassmilk
(BIO 101, Geneclean Kit IT). Probes were labeled with
digoxigenin. Prehybridization and hybridization were per-
formed with a non-radioactive DNA labeling and detec-
tion Kit (Boehringer Mannheim). Detection of hybrid
DNAs was achieved by chemiluminescent reaction using
AMPPD on Kodac x-omat film. Immunological detection
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was also done using color solution (containing NBT so-
lution and x-phosphate) on a membrane (Boehringer
Mannheim). The aforementioned reaction protocol was
recommended by the manufacturers.

DNA Cloning and Sequencing

PCR product of CW, DNA samples in Cogongrass was
recovered by glassmilk, cloned into T-vector (Promega),
and transformed into the E. coli strain ‘JIM109’ competent
cell (Promega). After bacteria culture and plasmid extrac-
tion (by Boehringer Mannheim, Qiagen-tip 20), the DNA
sample was sequenced by the dideoxy chain-termination
method using the Auto Read Sequencing Kit (Pharmacia).
The aforementioned reaction protocol was recommended
by the manufacturers.

Data Analysis

Data of bands obtained from PCR-amplified RFLP of
Cogongrass populations were analyzed statistically using
similarity coefficients (S), where S=2N, /N +N_,and N,
represents the number of co-migrating fragments (in con-
sidering all enzymes). N, and N are the total number of
bands for sample A and sample B, respectively (Chapco
et al., 1992; Wilde et al., 1992). A dendrogram was con-
structed based on data of the similarity matrix, using the
unweighted pair-group method analysis (UPGMA) (Rohlf
etal., 1982).

Results

PCR Amplification

DNA fragments amplified from PCR using primers 1G1
and IG2 were completed from 45 samples of Cogongrass.
Five PCR products of different lengths were found, 2,800
bp, 2,900 bp, 3,000 bp, 3,100 bp and 3,200 bp, respectively
(Figure 2). Both the 5‘end and 3’end of the PCR product
in the CW, sample was partly sequenced to identify the
PCR product that was IGS of rDNA (data not shown).
Using the PCR product of the CW, sample and hybridizing
it with the others indicated that the PCR products of all
samples fell into IGS regions (data not shown). The PCR
product of the CW, sample was identified and contained
both 48 bp of 25S rRNA gene and 24 bp of 17S rRNA gene.
Thus, five different IGS length variants of rDNA of
Cogongrass in Taiwan were detected, namely 2,730 bp,
2,830 bp, 2,930 bp, 3,030 bp and 3,130 bp. Among the five
IGS lengths, type 2,930 bp was the most abundant with a
75.5% presence among 45 samples of Cogongrass; type
2,730 bp was the second most abundant with 24.4%; type
3,030 bp was third with 22.2%, and types 2,830 bp and
3,130 bp were as low as 4.4%. Furthermore, populations
FS,PZ, TW, CK, YL, HS, KT, LY and NK analyzed by PCR
possess two types of IGS length with a 31.1% presence
among 45 samples of Cogongrass, one of them was minor,
and the remaining populations revealed only one type with
68.8% (Table 1). Restriction enzyme EcoRI was chosen
for rDNA length variation analysis because it cleaved both
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25S rRNA gene and 17S rRNA gene once (Taira et al.,
1988). Total genomic DNAs of all samples were digested
by EcoRI. After electrophoresing by 0.8% agarose gel and
staining with EtBr, a band of about 8.8 kb appeared (data
not shown). Those bands can be hybridized with the IGS
of CW, sample (Figure 3). The findings confirmed that
the rDNA of Cogongrass exhibited many copy numbers
in tandem repeat and only one main type of rDNA length
within individuals of Cogongrass.

PCR-Amplified RFLP

Each PCR product of 45 samples of Cogongrass was
digested with 13 restriction enzymes, namely Haelll, Taql,
Alul, Rsal, Banl, Cfol, Mspl, BstOl, Eco01091, Hinfl, Sty1,
EcoRV and Smal, revealing 283 bands in total. Of them,
248 bands were polymorphic, reaching 87.6% (Table 2). Of
these restriction enzymes, Taql, Alul, Rsal, Mspl,
Eco01091, Styl, and Smal revealed powerful polymorphic
bands above 90% in the IGS region of TDNA among the
15 Cogongrass populations, while EcoRV exhibited rather
low polymorphism (Figure 4).

Clustering Analysis

Based on PCR-amplified RFLP of IGS, the similarity was
computed between pairs of samples (data not shown). A
phylogenetic tree was constructed from similarity by
UPGMA. Based on this tree, the genetic variation within
the population was greater than that between populations
in some individuals of aforementioned populations, namely
FS, CK, YL, HS, KT, LY and NK. Furthermore, minor popu-
lation differentiation was revealed, namely in PZ, FY, TW,
HL, SL, PH and LT. Obviously, the aforementioned popu-
lations of Cogongrass in Taiwan could be divided into two
clusters. The CW population forms one cluster, and the
remaining 14 populations revealed another cluster (Figure
5).
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Discussion

Since the 17S-5.8S-25S structural gene region is very
conserved in sequence and is approximately 6.0 kb in most
grasses, the differences in rDNA repeat sizes are due to
variation in the IGS length (Pillay, 1996). However, in
some plants, there are two or more types of IGS length
among individual members of a plant population while in
others the length heterogeneity of IGS cannot be detected
(Rogers and Bendich, 1987; Lakshmikumaran and Negi,
1994). Generally, the variability of IGS length is smaller in
cultivated species than in wild type species. A reduction
in the variability of rDNA spacer may be due to domesti-
cation (Cordesse et al., 1990). However, the results of PCR
showed the variability of IGS length in Cogongrass, which
is wild, to be rather low, most individuals being of only
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Figure 3. The result of southern hybridization from six popu-
lations of I. cylindricain Taiwan hybridized by PCR product of
CW, sample. The abbreviations of sampling sites see Figure 1.
The arabic numbers indicate different sample of each population.

Figure 2. The IGS region of rDNA in 15 populations of .
cylindrica in Taiwan. The IGS region was obtained by the PCR
amplification of primers IG1 and IG2. The abbreviations of sam-
pling sites see Figure 1. The arabic numbers indicate different
samples of each population.

Figure 4. The band pattern of IGS region of rDNA of L
cylindrica obtained by using PCR, digested with Rsal restric-
tion enzyme, and separated by 2.5% NuSieve 3:1 agarose gel.
The abbreviations of sampling sites see Figure 1. The arabic
numbers indicate different samples of each population.
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Table 1. A summary of IGS length and number of IGS length variation from 15 populations of I. cylindrica based on PCR.

Location of population Length of IGS (bp)
and (abbreviation) 2730 2830 2930 3030 1130
Fengshan (FS) 1 + 4+
2 +* +
3 n +
Potzu (PZ) 1 + 4
2 + +*
3 + +*
Fengyuan (FY) 1 +
2 +
3 +
Chuangwei (TW) 1 + +*
2 n 4+
3 + +*
Hualien (HL) 1 +
2 +
3 +
Chengkung (CK) 1 +
2 +
3 +
Yehliu (YL) 1 +
2 +
3 +
Sarlum (SL) 1 +
2 +
3 +
Hoshe (HS) 1 +
2 +
3 +
Kengting (KT) 1 + +*
2 +
3 +
Penghu (PH) 1 T
2 +
3 +
Lutao (LT) 1 +
2 +
3 +
Lanyu (LY) 1 + 4
2 n o
3 + +*
Chuwei (CW) 1 +
2 +
3 +
Nankang (NK) 1 + 4
+
3 +
Total 45 11 2 34 10 2
% of total sample 24.4 4.4 75.5 222 4.4

+ : Presence of major band.
+": Presence of minor band.
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Table 2. The polymorphic fragment of IGS of rDNA from 15 populations of . c¢ylindrica digested by 13 restriction enzymes.

o L Polymorphic band
Enzyme Recognition site Restriction fragment number (A)
Number % of (A)

Haelll GGlcc 38 32 84.2
Taql TLCGA 11 10 90.9
Alul AGLCT 9 9 100
Rsal GTIAC 15 15 100
Banl GLG(T/C)(A/G)CC 13 11 84.6
Cfol GCGlC 32 25 78.1
Mspl clCGG 46 42 91.3
BstOl CCUA/T)GG 32 27 84.4
Eco01091 PubGJGN*CCPy* 12 11 91.7
Hinfl GLANTC 23 19 82.6
Syl CIC(A/T)(AIT)GG 25 24 96.0
EcoRV GATLATC 5 2 40.0
Smal CCClGGG 22 21 95.5
Total 283 248 87.6

°N, represent A, G, C or T.
°Pu, represent purine.
Py, represent pyrimidine.
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Figure 5. A dendrogram of cluster analysis based on PCR-am-
plified RFLP of IGS region from 15 populations of I. cylindrica
in Taiwan. The abbreviations of sampling sites see Figure 1. The
arabic numbers indicate different sample of each population.

one type (68.9%) (Figure 2 and Table 1). The variability
was also as low as one type when hybridization tech-
niques were used (Figure 3). The variation in rDNA spacer
length can reflect both a phylogenetic relationship and a
limited ecological introgression (Cordesse et al., 1990).
Cogongrass in Taiwan contained five types of IGS length
variants, namely 2,730 bp, 2,830 bp, 2,930 bp, 3,030 bp and
3,130 bp. However, no positive correlation appeared be-
tween rDNA length variation and geographical distribution.
For example, samples collected from YL, SL, NK and CW
were located at the coastal area of Taipei county, but the
IGS length patterns of the YL, SL and NK populations were
different from that of the CW population (Table 1 and Fig-
ure 1). The report that the heterogeneous length of IGS
varied with the copy number is primarily based on small
subrepeats of several plants (Cordesse et al., 1990;
Kaufman et al., 1996). The variability of IGS length ranged
from 1 kb to 12 kb or higher for different plant species
(Rogers and Bendich, 1987), and small subrepeat length
varied from 30 bp to 350 bp (Beech and Strobeck, 1993).
Therefore, we infer a 100 bp small subrepeat sequence
among IGS of rDNA of Cogongrass in Taiwan. A phylo-
genetic tree of IGS based on PCR-amplified RFLP analy-
sis suggested that the CW population was unique and
distinguished from the remaining 14 populations (Figure
5). Among these populations no obvious geographical
relationship was exhibited (Figure 1 and Figure 5).

The variability of IGS length that appeared within
populations, namely TW, CK, YL, HS, KT, LY and NK, was
greater (Table 1). Furthermore, the results of the cluster
analysis of PCR-amplified RFLP in IGS of rDNA also
showed that the genetic variation within the population
was greater than that between population in some indi-
viduals of the aforementioned populations, namely FS, CK,
YL, HS, KT, LY and NK (Figure 5). In view of the two
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points above, we infer that Cogongrass plants among the
15 populations should have a strong gene flow, deriving
from the light thistle-like seeds of the grass, which can
disperse long distances. In fact, studies with several
plants have suggested that genetic variation in the IGS
may be adaptive and that the region is under selection
(Flavell et al., 1986; Kaufman et al., 1996), or rapid conver-
sion under Jray induction (Fukuoka et al., 1994). Flavell
et al. (1986) analyzed individuals and populations of 7riti-
cum dicoccoides from Israel. Patterns of IGS length varia-
tion in 7. dicoccoides TDNA are correlated significantly
with both allozymic diversity and environmental factors
relating to water availability. In the present study, the IGS
sequence of rDNAs among intra- and inter-specific popu-
lations of Cogongrass analyzed by PCR-amplified RFLP
suggested that the IGS sequence of rDNA in the CW
population may be influenced by the stressful environment.
The unique genetic variation of the CW population could
have evolved from the stressful environment, which might
cause some populations to differentiate and adapt
uniquely even under high levels of gene flow (Bradshaw,
1972; Sork et al., 1993). In addition to the analysis of IGS
sequence based on PCR-amplified RFLP of 15 populations,
we detected genetic variation based on the RAPD of
bulked DNA (data unpublished). The findings of RAPD
analysis confirmed that the CW population was unique
and remarkably different from the remaining 14
populations. However, in studying the PCR-amplified
RFLP of the internal transcribed spacer (ITS) region among
the 45 same samples, we found no population varied sig-
nificantly among the 15 populations of Cogongrass in Tai-
wan (data unpublished).

It has been indicated that the maintenance of repetitive
DNA sequences including rDNAs is important for plants
because they can not move to avoid unfavorable changes
in their environment (Rogers and Bendich, 1987). While
maintaining a larger rDNA pool is possibly advantageous
in times of stress, most wild and cultivated species still
maintain a high copy number under nonstressful condi-
tions (Rogers and Bendich, 1987). McClintock (1984) sug-
gested that genome change is a way plants can adapt to
environmental stress. Walbot and Cullis (1985) pointed
out that flexibility is an important feature of the plant
genome. Besides, it seems possible that the genomic in-
stability can be switched on under stress conditions and
switched off when the stress is over (Cairns et al., 1988;
Fukuoka et al., 1994). Several studies on natural popula-
tions of both plants and animals have shown that numeri-
cal and sequence divergence among multigene families
may be maintained by selection (Govindaraju and Cullis,
1992). Now, we know that the heterogeneity exists in the
5' portion of the IGS of rDNA in many plants (Rogers and
Bendich, 1987). However, the origin of the enormous di-
versity of the IGS sequences can not be explained yet
(King et al., 1993). Moreover, many organisms alter their
DNA in response to stress (Schaal and Learn, 1988). The
amount of rDNA can change under specific environmen-
tal conditions, and the observed changes can be trans-
mitted to the progeny (Fukuoka et al., 1994). A new variant
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rDNA may spread among the structure of tandem repeat
rDNAs by the processes of unequal recombination and
gene conversion (Beech and Strobeck, 1993; Bhatia et al.,
1996). This study has suggested that this variant plays
some role in selecting the variants of the IGS sequence in
rDNAs. Furthermore, we suggested that the IGS of rDNA
family in the CW population of Cogongrass might main-
tain a few other types of IGS sequence to adapt to the
changing environment.

Morphological characters such as leaf length, leaf width,
and plant height were measured based on the transplant-
ing of rhizome of Cogongrass from the field to the
greenhouse. The Cogongrass growing at the CW site had
waxy crystals on its surface and a rib with a hollow struc-
ture without ground tissue (Cheng and Chou, 1997). The
CW population is located at the mouth of the Tamshui
River, where severe environmental pressures are present,
such as frequent submergence in high saline water and
oxygen deficiency at the roots (Chang, 1996). Therefore,
we infer that the development of waxy crystals on the leaf
surface is for the purpose of reducing evaporation, and
the hollow structure on the rib without the ground tissue
has evolved to help the plant adapt to oxygen deficiency.

In conclusion, the present study has shown the genetic
variation of IGS length and sequence of rDNA among in-
tra- and inter-specific populations of Cogongrass based
on PCR-amplified RFLP. It supported the previous find-
ings of RAPD and morphological characters that the CW
population of Cogongrass was distinctly different from the
remaining populations and that microevolution was run-
ning in the CW population. Moreover, the analysis of IGS
of rDNA based on PCR-amplified RFLP seems to be an
easy and powerful tool to elucidate population structure
and microevolution.
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