|
|||||||||||||||||||||||||||||||||||
Botanical Studies (2012) 53: 85-96.
|
PHYSIOLOGY
|
|
|||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||
|
conceptualizing the importance of competition in natural communities and agricultural systems (Grime, 1979; Tilman, 1982; Tow and Lazenby, 2001), the mechanisms involved and particular resources acting as intermediaries are often poorly understood (Goldberg and Landa, 1991). Indeed, there is increasing evidence that the interactions in plant communities involve complex additive and non-additive effects among the competing species (Weigelt et al., 2006). Nevertheless, while it is clear that competition can involve plant-based allocation tradeoffs to maximize resource acquisition that interact with other processes (e.g., herbivory, nutrient stress; Bonser and Reader, 1995; Craine, 2009), the genomic basis for these interactions, even in relatively simple communities where intraspecific interactions dominate is largely unknown. Genomic tech-
|
||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||
86
|
Botanical Studies, Vol. 53, 2012
|
||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GEISLER et al. ― Arabidopsis intraspecific competition
|
87
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||
88
|
Botanical Studies, Vol. 53, 2012
|
||
|
|||
|
the growth and overall phenotype of plants were recorded over a 6 week growing period. The soil chosen for this experiment was a typical potting soil and had a combination of rich mineral and organic nutrient sources (see methods) and slow release fertilizer beads which provide soil nitrogen, phosphorus and potassium. There was no obvious difference in germination, and no obvious difference in early growth or morphology of young seedlings among densities. Density treatments significantly affected vegetative growth as measured by rosette diameter (Density x time interaction, Fs"= 3.44, p = 0.0097) (Figure 1B) and longest leaf length ^=10.90, p = 0.0034) (Figure 1C). By 10 days after planting, there was significant reduction in growth of plants at low density and higher in comparison to isolated plants (lsmeans, td^2。=4.58, p = 0.0002). By the end of the experiment, most plants had produced inflorescences with siliques, although there were obvious differences in inflorescence shape, number and size in the crowded pots. Inflorescences on the plants in the most crowded pots tended to have few or no branches (Figure 1C), were smaller and thinner in diameter, but remained vertical. In low density pots or when grown in isolation,
|
||
|
|||
Figure 1. Intraspecific competition effect on Arabidopsis growth. A: Arabidopsis plants at 27 days imaged prior to RNA harvest. Numbers indicate seeds sown on day 1 on a regular grid. B: Average rosette diameter for 4 different planting densities. Individual average measurements per plant taken at 54 days post germination in C and D. Measurements are scored on a relative scale in comparison to 9 plants per pot (red bars). These measurements include length of longest stalk, number of siliques and stalks per plant, percentage of full flowering plants, those that are ephemeral or senescing in C. Length of longest leaf of the rosette, fresh and dry weight of all aboveground biomass of all plants in each pot, and the average plant aboveground biomass in D. Some pots have fewer plants than the indicated by "seed sown number" due to seedling death.
|
|||
Figure 2. Overlap of genes induced and suppressed by low and high intraspecific competition in Arabidopsis. Upper panel: numbers indicate total genes induced (2 fold or greater vs. isolated plants) by plants in low (9 plants per pot; green circle) and high (100 plants per pot; yellow) density. Numbers in overlapping region indicate observed genes common to both low and high density, and the expected overlap due to chance alone (italics). Bold numbers to the right are the ratios of observed overlap divided by expected. Lower panel: 2-fold suppressed genes.
|
|||
|
|||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GEISLER et al. ― Arabidopsis intraspecific competition
|
89
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
At high density (100 plants per pot), many of the same genes were similarly but more strongly regulated (i.e. greater M-values), especially those genes suppressed by competition (Table 1). Genes induced and genes suppressed (>2 fold) by light and strong competition significantly overlapped when compared to randomly selected genes (Figure 2, full transcriptome data in Supplementary file 3). The m-values of all genes in low and high densities were plotted as X vs. Y, and showed a strongly significant linear correlation, with a Pearson regression coefficient (R value) of 0.56. Such an overlap of genes is similar to that found in weak vs. strong abiotic stresses, and would be expected if the genes involved in recognition of crowding and any subsequent adaptive strategy were similar but activated to different degrees. The 116 genes induced and 938 genes suppressed in both densities represent the regu-lon (group of co-regulated genes) of the transcriptional reaction to intraspecific competition. A significant number of the genes most strongly and significantly induced were involved in photosynthesis in the light harvesting complex (CAB genes), the Calvin cycle, and carbonic anhydrases involved in the metabolism of dissolved carbonate (Table 1; Figure 3, right half of volcano). Genes involved in abiotic stress and reactive oxygen signaling, pathogen defense, and wall modification were significantly suppressed in both densities (Table 1), with significantly increased suppression at high density (Table 1; Figure 3,
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 1. Log ratio (M-value) of top 10 genes induced or suppressed by intraspecific competition in Arabidopsis.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
*Genes involved in photosynthesis, J Genes involved in biotic/abiotic stress defense. Mvalue is log base 2 of the ratio of low or high density plants vs. isolated plants.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
90
|
Botanical Studies, Vol. 53, 2012
|
||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
Figure 3. Volcano plots of the transcriptome of Arabidopsis plants. Low (9 plants per pot) and high (100 plants per pot) intraspecific competition. Each point represents a single gene which is suppressed (left of Y-axis) or induced (right of Y-axis). Genes involved in known biological processes from the Gene Ontology database were given special symbols as shown in the legend. Expression ratio (X-axis) was calculated as expression value in competing plants over that in isolated plants (1 plant per pot). The P-value for differential expression significance was calculated from a one tailed T-test of the pixel brightness for 80 pixels scored on each microarray corresponding to that gene. Key genes discussed in the text: LHC = light harvesting complex; PSB= photosystem subunit; AtNIT = nitrilase; SEN1 = senescence associated gene 1.
|
|||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||
GEISLER et al. ― Arabidopsis intraspecific competition
|
91
|
|||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||
Figure 4. A comparison of major metabolic pathway expression using MapMan. A: Planting density of 9 plants per pot. B: 100 plants per pot. C: Nitrogen starved. D: Shoots sampled 24 hrs after wounding. Red squares indicate genes suppressed in comparison to isolated or untreated plants. Blue squares indicate genes induced. Genes belonging to different biological processes are located in different regions of the metabolism map as indicated. MapMan ImageAnnotator version 2.1.1 was used to generate these images from gene expression data.
|
||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||
|
|||
92
|
Botanical Studies, Vol. 53, 2012
|
||
|
|||
|
|||
|
|||
Figure 5. Comparison of competitive stress to other biotic and abiotic stresses. Each row and column represents a microarray based experiment in which plants were subjected to different planting densities (e.g. 1,9,100 plants per pot in this experiment), different light levels (50, 150, 250 uM), abiotic stresses (peroxide, ozone, drought, salt, cold, wounding, etc), biotic stresses (Pseudomonas syringe or Phytopathora infestans infection), the phytohormones abscisic acid, auxin, gibberilin, brassinolide, cytokinin, ethylene, jasmonic acid, and salicylic acid, or starvation of potassium and nitrogen. Microarray experiments used for comparison were taken from public archives, and globally normalized for cross-microarray comparison (see methods). The numbers in each cell represent a pair wise calculation of the Pearson correlation coefficient for the expression of all genes in each transcriptome. High positive numbers (>0.1; blue shading) represent statistically significant positive correlation between the two stresses effects on gene expression, while high negative numbers (<-0.1; orange shading) represents significant negative correlation.
|
|||
|
|||
growth at the expense of many other genes being down-regulated. Since the soil used in our experiment contained large amounts of readily available and slow release fertilizers, it is perhaps not so surprising that genes did not respond as they would to a soil nutrient deprivation. Still, that a competitive response under these crowding conditions does not activate the usual suite of "stress response" genes was intriguing. Even more surprising was that genes normally upregulated by wounding, abiotic stress and pathogen attack were suppressed well below normal "unstressed" levels in strongly competing plants. The plant de-fensins PDF 1.1, PDF1.2a, PDF1.2c, PDF1.3 and PDF1.2b were typical examples of this pattern of response; they act as anti-fungal defense proteins, and are induced by pathogenic fungal attack. These genes are also significantly down regulated in the A. thaliana flowering mutants co, fca, fd and fe (Wilson et al., 2005). FLOWERING LOCUS C (FLC) is a MADS-domain transcription factor. The expression of FLC correlates with flowering time, with high levels of FLC mRNA being associated with late flowering (Michaels and Amasino, 1999). CONSTANS (CO) is a zinc finger transcription factor (Putterill et al., 1995). CO
|
correlates with flowering, co mutants have delayed flowering. FD is a bZIP protein involved in the photoperiod pathway that triggers floral induction (Wigge et al., 2005). FE gene product is unknown but involved within the pho-toperiod pathway. A link between pathogen infection and early flowering has been suggested, and the transition from vegetative growth and flowering involves significant re-programming of primary metabolism and source-sink relationships. The SEN1 gene is strongly suppressed in both mild and severe competition. The SEN1 promoter responds to both the salicylic (SA) and jasmonic acid (JA) signaling pathways (Schenk et al., 2005). The sen1-1 knock-out mutant lacks a clear "senescence-related" phenotype, it is thought to be a link between senescence and pathogen related gene expression. In strongly competing plants, the downregulation of defense response genes may be similarly linked to reprogramming of metabolic activity and a shift in source-sink relationships, possibly to maximize growth and ensure that the plant can deploy photosynthetic surfaces near or above the canopy of its competitors. Such competition for light is generally asymmetric involving a major allocation of resources to aboveground growth, i.e.,
|
||
|
|||
|
||||||||||||||||||||||||||||||||||||||||||||||||
GEISLER et al. ― Arabidopsis intraspecific competition
|
93
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
94
|
Botanical Studies, Vol. 53, 2012
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||
GEISLER et al. ― Arabidopsis intraspecific competition
|
95
|
||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||
96
|
Botanical Studies, Vol. 53, 2012
|
|||||||||||||||||||||||
|
||||||||||||||||||||||||
|
||||||||||||||||||||||||
|
||||||||||||||||||||||||