|
|||||||||||||||||||||||||||||||||||
Botanical Studies (2012) 53: 97-104.
|
REPRODUCTIVE BIOLOGY
|
|
|||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
98
|
Botanical Studies, Vol. 53, 2012
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a DAP = days after pollination.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||
LEE and YEUNG ― The ovule development of lady's slipper orchid
|
99
|
||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||
micropylar dyad showed less staining in the cytoplasm; its nucleus rounded up with a denser appearance when compared to the nucleus of the chalazal dyad (Figure 2D). A distinct callose layer clearly separated the micropylar dyad from the chalazal one (Figure 3A). The functional dyad continued to enlarge in size, while the micropylar dyad became increasingly compressed (Table 2, Figure 2E). The nucleus of the functional dyad was large with a number of micro-nucleoli present. At that time, a cal-lose wall completely enclosed the functional dyad (Figure 3B). The functional dyad continued to enlarge through the process of vacuolation (Figure 2F). As the functional dyad increased in size, the micropylar dyad became compressed and eventually, only the degenerating nucleus was visible (Figure 2F). As the functional dyad increased its size, the callose gradually disappeared from the lateral walls of the functional dyad; however, callose remained in the walls, especially in the common wall separating the two dyads as well as in the chalazal end wall of the functional dyad (Figure 3C). When comparing the size of the functional dyad to that of the megasporocyte, it was obvious that the former was slightly smaller than the latter (Table 2).
|
|
||||||||||||||||||||||||||||||||||||||||||
Table 2. Changes in cell dimensions during embryo sac development.
|
|||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||
aX, Y standard deviation in (im.
|
|||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||
Figure 1. The flower and developing nucellar filaments in the ovary of P. delenatii at the time of anthesis. (A) The front view of flower at anthesis. Scale bar = 10 mm; (B) The ovary cross-section showing the 3-ridged placental tissue. Each ridge has many nucellar filaments (arrow). Scale bar = 2 mm; (C) The scanning electron microscope (SEM) micrograph of the highly branched nucellar filaments. Scale bar = 100 μm; (D) The historesin section of the nucellar filaments. Scale bar =100 μm.
|
|||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||
|
|||
100
|
Botanical Studies, Vol. 53, 2012
|
||
|
|||
|
|||
|
|||
Figure 2. Light micrographs of megasporogenesis. (A) Archesporial cell (arrow) formation at the terminus of the nucellar filament. Scale bar = 20 μm; (B) The archesporial cell further enlarges and differentiates into the megasporocyte. As the archesporial cell differentiates, the integument tissues are initiated (arrow). Scale bar = 20 μm; (C) Elongation of megasporocyte before the first meiotic division. Starch grains accumulate at the chalazal end of the megasporocyte (arrow). Scale bar = 30 [im; (D) An unequal dyad resulting from the first meiotic division. Scale bar = 30 μm; (E) Light micrograph showing a functional chalazal dyad and a non-functional micropylar dyad that will gradually degenerate (arrow). Scale bar = 30 μm; (F) The functional chalazal dyad enlarges prior to the second meiotic division. Scale bar = 30 μm; (G) Light micrograph showing the second meiotic division as the chromosomes separate at the anaphase. Scale bar = 30 μm; (H) The second meiotic division results in the formation of a two-nucleate embryo sac. No cell wall is laid down between the nuclei within the chalazal dyad after the second meiotic division. Scale bar = 30 μm; (I) Vacuolation of the two-nucleate embryo sac begins as a large vacuole forms near the center of the cell. Scale bar = 30 μm.
|
|||
|
|||
|
|||||||||||||||||||||||||||||||||||||
LEE and YEUNG ― The ovule development of lady's slipper orchid
|
101
|
||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||
Figure 3. Light micrographs showing the callose deposition. (A) Callose is first detected in the common wall separating the members of the dyad. Scale bar = 15 μm; (B) Later than, callose completely surrounds the functional chalazal dyad, isolating the functional chalazal dyad from the degenerating micropylar dyad. Scale bar = 15 μm; (C) As the functional chalazal dyad continues to enlarge, callose can only be detected in the common wall separating the two dyads and in the chalazal end wall of the functional dyad. Scale bar = 15 μm.
|
|||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||
|
|||||||||||||||
102
|
Botanical Studies, Vol. 53, 2012
|
||||||||||||||
|
|||||||||||||||
in cytoplasmic content between the two cells most likely leads to the different fates observed. The polarization of cytoplasmic components has been reported in many flowering plants (Yeung and Law, 1997). In P. spicerianum, a polarized distribution has also been reported (Corti and Cecchi, 1970). In Cyripedium passerinum, a temperate slipper orchid species with a bisporic development, a highly polarized cytoplasm is also observed with a large number of starch granules located at the chalazal end of the megasporocyte (Law and Yeung, 1993). In this study, the polarized cytoplasm may be due to a more active synthesis and accumulation of nutrients at the chalazal end of the
|
|
||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
Figure 4. Light micrographs of megagametogenesis. (A) The large central vacuole aids in the rapid expansion of the two-nucleate embryo sac. Scale bar = 30 μm; (B) Light micrograph showing a two-nucleate embryo sac undergoing the first mitotic cell division, resulting in the formation of a four- nucleate embryo sac. Scale bar = 30 μm; (C) Light micrograph showing a four-nucleate embryo sac with similar nucleus size. Scale bar = 50 μm; (D) Only the micropylar nuclei of the four-nucleate embryo sac divide again to produce a six-nucleate embryo sac. Scale bar = 50 μm; (E) A mature embryo sac showing the egg apparatus, including the egg cell (arrow) and two synergids with a prominent filiform apparatus (arrowhead). Scale bar = 80 μm; (F) Nile red staining fluorescence micrograph of a mature embryo sac at the same stage as that seen in Fig. 3E. The fluorescence outline is first detected in the innermost walls of the innermost layer of the integument as the embryo sac reaches maturity. Scale bar = 80 μm; (G) Light micrograph of a zygote (arrowhead) just after fertilization at 60 DAP. The zygote is polarized with a chalazally-located nucleus and a prominent vacuole occupying the micropylar end. The arrow indicates the degenerated synergid. Scale bar = 80 μm; (H) Nile red staining fluorescence micrograph of a zygote stage similar to Figure 3G. The innermost walls of the innermost layer of the seed coat fluoresce brightly. Note the lack of wall fluorescence near both the chalazal and micropylar ends. Scale bar = 80 μm.
|
|||||||||||||||
|
|||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LEE and YEUNG ― The ovule development of lady's slipper orchid
|
103
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||
104
|
Botanical Studies, Vol. 53, 2012
|
||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||
關鍵詞:胼胝質;胚胎學;仙履蘭;尼羅紅;胚珠。
|
|||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||